Building an Auto-formalization Infrastructure
from Mathematical Literature through Deep

Learning — Project Description
Qingxiang Wang (Shawn)

University of Innsbruck &

Czech Technical University in Prague

March 2018




Overview

* Why Auto-formalization?
* Machine Learning in Auto-formalization
* Deep Learning

* Deep Learning in Theorem Proving

* An Imitial Experiment

e Discussion




A mathematical paper published in 2001 in Annals of Mathematics:

Invariant differential operators
and eigenspace representations
on an affine symmetric space

By JING-SONG HUANG*

Abstract

Let G/H be an affine symmetric space of split rank r. Let D be a preferred
polynomial algebra of G-invariant differential operators on G/H generated by
r elements. We show that the space of K-finite joint eigenfunctions of D on
G /H form an admissible (g, K )-module which is called an eigenspace represen-
tation. The main content of this paper is description of the algebras of invariant
differential operators and determination of the eigenspace representations on
G/H. We also obtain a Poisson transform for 7-spherical eigenfunctions on
G/H by Eisenstein integrals.




Gaps were found 1n 2008. It took 7 years for the author to fixed the proof.

Erratum and Addendum to: Invariant Differential Operators and Eigenspace
Representations on an Affine Symmetric Space

Jing-Song Huang
(Submitted on 15 Jul 2017)

The purpose of this erratum and addendum is to correct the errors in [1]. It consists of five components:
1. Lemma 7.1 and Proposition 7.2 are wrong and discarded;

2. A new proof of existence A(£) in (7.1) without Proposition 7.2;

3. Definition of a new bijection in Theorem 5.2 and a proof by a new technique;

4. A new proof of Theorem 5.5 based on the new bijection in Theorem 5.2;

5. Correction to the list of exceptional simple pairs in Proposition 3.1.

The main results of [1] remain true as stated. We also add a final remark on generalization.




In 2017, the 16-year old paper was withdrawn:

Erratum and Addendum to: Invariant Differential Operators and Eigenspace
Representations on an Affine Symmetric Space

Jing-Song Huang

(Submitted on 15 Jul 2017) Author “shocked” after tOp math
The purpose of this erratum and addendum is to journal retracts pap er
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Why Auto-formalization

 Formalized libraries.

EVNEE

HOL Metamath Lean Isabelle

* Mizar contains over 10k definitions and over 50k proofs, yet...

Number of Annual Entries in Zentralblatt MATH
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Machine Learning in Auto-formalization

* Function approximation view toward formalization and the prospect of
machine learning approach to formalization.
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Deep Learning

* Some theoretical results
* Universal approximation theorem (Cybenko, Hornik), Depth separation
theorem (Telgarsky, Shamir), etc
* Algorithmic techniques and novel architecture
* Backpropagation, SGD, CNN, RNN, etc

 Advance 1in hardware and software
e GPU, Tensorflow, etc

Simple Neural Network Deep Learning Neural Network
 Availability of large dataset
* ImageNet, IWSLT, etc

@ nput Layer () Hidden Layer @ Output Layer




Deep Learning 1n Theorem Proving

* Applications focus on doing ATP on existing libraries.

Jun, 2016 Alemi et al. CNN, LSTM/GRU MMLFOF (Mizar) 80.9%
Aug, 2016 Whalen RL, GRU Metamath 14%
Jan, 2017 Loos et al. CNN, WaveNet, RecursiveNN MMLFOF (Mizar) 81.5%
Mar, 2017 Kaliszyk et al. CNN, LSTM HolStep (HOL-Light) 83%
Sep, 2017 Wang et al. FormulaNet HolStep (HOL-Light) 90.3%

* Opportunities of deep learning in formalization.




An Initial Experiment

* Visit to Prague 1n January.
* Neural machine translation (Seq2seq model, Luong 2017).
* Can be considered as a complicated differentiable function.
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An Initial Experiment

* Recurrent neural network (RNN) and Long short-term memory cell
(LSTM)
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An Initial Experiment
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An Initial Experiment

* Raw data from Grzegorz Bancerek (20177).

* Formal abstracts of Formalized mathematics, which are
generated latex from Mizar (v8.0.01 5.6.1169)

* Extract Latex-Mizar statement pairs as training data.
Use Latex as source and Mizar as target.

theorem PO:

for L being right_zeroed non empty addLoopStr,
S,T being Subset of L
st ©.L in T holds S ¢c=S + T

Formalized 1 I Seq2Seq
Mathematics

Now we state the propositions:

(1) Let us consider a right zeroed, non empty additive loop structure L, and
subsets S, T of L. If 0, € T, then S C S+ T..




An Initial Experiment

* In total, 53368 theorems (schema) statements were divided by 10:1
nto:
* Training set: 48517 statements
* Test set: 4851 statements

 Both Latex and Mizar tokenized to accommodate the framework.

Latex If $ X \mathrel { = } { \rm the ~ } { { { \rm carrier } ~ { \rm
of } ~{ \rm 3} }+{A {9} }¢%and $ X $ is plane , then $ { A
{9} 1} % is an affine plane .

Mizar X = the carrier of AS & X is being_plane implies AS is AffinPlane ;

Latex If${s {9} 7} % is convergent and $ { s {8 } } $ is a
subsequence of $ { s {9} } $, then$ { s {8} } $ is
convergent .

Mizar seq is convergent & seql is subsequence of seq implies seql is

convergent ;




An Initial Experiment

* Preliminary result (among the 4851 test statements)

Attention mechanism | Number of identical statements generated

No attention 2.5%
Bahdanau 165 3.4%
Normed Bahdanau 1267 26.12%
Luong 1375 28.34%
Scaled Luong 1270 26.18%
Any 1782 36.73%

* A good correspondence between Latex and Mizar, probably easy to
learn.




An Initial Experiment

* Sample unmatched statements

Attention mechanism | Mizar statement

Correct statement for T being Noetherian sup-Semilattice for I being Ideal of T holds ex sup of I , T & sup I in
5

No attention for T being lower-bounded sup-Semilattice for I being Ideal of T holds I is upper-bounded & I
is upper-bounded ;

Bahdanau for T being T , T being Ideal of T , I being Element of T holds height T in I ;

Normed Bahdanau for T being Noetherian adj-structured sup-Semilattice for I being Ideal of T holds ex_sup_of I
, T& sup I in I ;

Luong for T being Noetherian adj-structured sup-Semilattice for I being Ideal of T holds ex_sup_of I
, T& sup I in I ;

Scaled Luong for T being Noetherian sup-Semilattice , I being Ideal of T ex I , sup I st ex_ supofI , T &
sup I in I ;

* Further exploration in finding parsable statement, or hopefully
generating syntactically correct statement.




Discussion

* Formalization using deep learning 1s a promising direction.
* Deep learning and Al, open to further development.

. Understandmg mathematical statements versus general natural
language understanding.

* Implication of achieving auto-formalization.

* Lots of challenges await us.




Thanks

...Ta mathemata [sic] are the things in so far as we take cognizance of
them as what we already know them to be in advance, the body of the
bodily, the plant-like of the plants, the animal-like of the animals, the
thing-ness of the things, and so on. This genuine learning is therefore an
extremely peculiar taking, a taking where one who takes only takes what
one basically already gets...

Martin Heidegger, Modern Science, Metaphysics and Mathematics



