Dynamic Strategy Priority

Michael Rawson, Giles Reger
University of Manchester, UK
Background

Theorem Provers
Vampire
Algorithms
Automated Theorem Provers

Proposition → Prover (sorcery) → Proof
ATP Design & Folklore

• Hard problem
• Complementary heuristics
• Best results require careful engineering
• Algorithm either solves a problem quickly, or not at all
• Small changes cause huge differences.
• Performance matters
• Generally care about *finding* proofs, not time-to-proof
Vampire

• ATP
• First-order logic with equality (+ extensions)
• Experimental testbed for this project.
Vampire (advertisement)

- High-performance
- CASC veteran
- State-of-the-art proof technology
- Well-engineered
- Decades of experience
- Large database of problems and proofs
- http://vprover.github.io
- No longer hard to obtain!
Algorithm

- Pre-process ("clausify") your problem, negated
- Obtain set of clauses
- Resolve clauses according to rules
- Iterate
- Produce the empty clause
- QED
Strategies

What are they?
Why does Vampire need them?
Strategies in Vampire

- Algorithm
- Parameters
- Time to run

dis+1011_24_cond=fast:drc=off:nwc=10:nicw=on:ptb=off:ssec=off:sp1=sat:14
Strategies in Vampire

• Run several short strategies
• Better than one long strategy
• Execute strategy *schedules*
• Find schedules experimentally
• Problem solved?

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Success?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes!</td>
</tr>
<tr>
<td>4</td>
<td>...</td>
</tr>
</tbody>
</table>
Strategy schedules are great!

• Much better than using just one strategy
• Minimal overhead
• Engineering opportunity
• Parallelism
Unfortunately...

- Computationally difficult to find “best” strategy schedules
- Engineering: schedules.cpp unreasonable
- Brittle and rigid
- Frequently slow due to ordering
Possible fix: round-robin scheduling

- Turns this

 ![Round-robin scheduling diagram]

- Into this

 ![Modified round-robin scheduling diagram]

- Doesn’t fix other issues, context-switching overheads
- Not particularly “smart”
Possible fix: “static” priority

- Try and guess which strategy will work first
- Based on features of the input problem
- Vampire attempts some version of this when selecting schedules
- Little runtime overhead
- Overly ambitious?
Proposal: “dynamic” strategy priority

• Run a standard or existing schedule, but...
• Regularly stop and check running strategies
• Look for strategies which look like they’re succeeding or failing (how?)
• Prioritise succeeding strategies

• Turn this:

• Into this:
Machine Learning

Data collection & preparation
Classifier training
Evaluation
Data collection

• We want to find “something” to identify strategies
• Not sure what
• Available features: properties, statistics, options
• Report ALL the features (376 of them)
• Report a real-valued feature vector every k resolution steps
• Decently-large dataset of execution traces
• Tag traces with success or failure
Example trace
Data ideals

• Real values
• Zero mean, unit variance
• Fixed input size
• Not too voluminous
• Preferably matrix-like
• Balanced dataset
Problems and “Solutions”

• Problem: far more failing than successful traces
 • “Solution”: randomly select enough failures to match successes
• Problem: traces are of wildly differing lengths
 • “Solution”: bucket-averaging to the same size
• Problem: want to predict based on running (not complete) strategies
 • “Solution”: chop up traces to yield several traces at different stages
• Problem: traces contain high-variance data
 • Solution: feature scaling!
Example trace (after pre-processing)
Classifiers

• Several off-the-shelf technologies:
 • “Vanilla” neural network
 • Convolutional neural network
 • Gated Recurrent Unit (a recurrent neural network)

• All neural networks, 1 hidden layer. Other suggestions welcome!

• Thanks to Keras and Scikit-learn.
Results (5-fold cross-validation)

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean accuracy (%)</th>
<th>Standard deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple NN</td>
<td>81.5</td>
<td>2.0</td>
</tr>
<tr>
<td>Convolutional NN</td>
<td>82.4</td>
<td>3.1</td>
</tr>
<tr>
<td>Recurrent NN</td>
<td>83.9</td>
<td>1.9</td>
</tr>
</tbody>
</table>
Results

• High accuracy (?!)
• Surprisingly little difference between NN methods
• Reasonably consistent across a dataset of around 10,000 traces
• Little tweaking required
Selection

• Despite expectation: simple NN suffices
• Much more performant than other classifiers
• Simple to implement!
Implementation

Integrating classifier
Scheduling modifications
Benchmark
Integrating classifiers

• Challenging for more-sophisticated classifiers
• Not too bad for the simple classifier chosen
• Train network in Python
• Generate C(++) code
• No dependencies
Scheduling issues

• Ideally, run all strategies simultaneously. But...
 • Memory pressure
 • Start-up time
 • Less good for the common case: short strategies

• If we don’t have all strategies running at once, what’s the point?
Compromise

- Pool of running processes
- Queue of paused (or non-started) processes
- When the pool needs filling, take processes from queue
- Regularly remove processes from the run-pool and re-evaluate them
- Still partially sequential, avoids some issues
- Only has all strategies running simultaneously in a corner case
System overview

- Queued
- Wake Up
- Running
- Give up/Proof
- Prediction
- Time Ends
- Predictor
Benchmarks

• Thanks to StarExec, TPTP
• Compared to baseline without modification on around 20k problems
• Not good for solving theorems: 585 vs 111 distinct proofs found
• Better for speed: 10.5s/proof vs 8.7s/proof!
• Also compared to round-robin: better in both aspects
Wrap Up
Conclusions

• Very early work
• Classifier performance is pleasantly surprising
• Implementation issues
• Perhaps an unfair comparison with baseline Vampire?
• Plenty of room for improvement and future exploration
Questions