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Interactive Proof in Type Theory

· Practical problem

· large parts of proofs are tedious

· Automation for Interactive Proof
· Proof search: intuition, firstorder,

· Decision Procedures: congruence, fourier, ring, omega, SMTCoq, . . .

· AI/ATP techniques: Hammers
· MizAR for Mizar

· Sledgehammer for Isabelle/HOL

· HOL(y)Hammer for HOL Light and HOL4

· CoqHammer for Coq
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Hammers

· Hammer goal: provide efficient automated reasoning using facts
from a large library.

· Strong relevance filtering.
· Usable library search “modulo simple reasoning”.

· We may not know the name of the lemma we want to apply.
· There may be many equivalent formulations of the lemma – which one

is used in the library?
· The exact lemma may not exist in the library, but it may “trivially”

follow from a few other lemmas in the library.
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Hammer Overview

Proof Assistant Hammer ATP

Current Goal TPTP

ITP Proof ATP Proof
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Hammers

Hammers work in three phases.

· Using machine-learning and AI techniques perform
premise-selection: select about a few hundred to 1-2 thousand
lemmas that are likely to be needed in the proof of the conjecture.

· Translate the selected lemmas, together with the conjecture, from
the logic of the ITP to a format accepted by powerful external
automated theorem provers (ATPs) – most commonly untyped
first-order logic with equality. Run the ATP(s) on the result of the
translation.

· Reprove the conjecture in the logic of the ITP, using the information
obtained in the ATP runs. Typically, a list of (usually a few) lemmas
needed by an ATP to prove the conjecture is obtained from an ATP
run, and we try to reprove the goal from these lemmas.
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Evaluations
Top-level goals:

· HOL(y)Hammer
· Flyspeck text formalization: 47%

· Similar results for HOL4

· Slightly weaker for CakeML

· Sledgehammer
· Probability theory: 40%

· Term rewriting: 44%

· Java threads: 59%

· MizAR
· Mizar Mathematical Library: 44%

· CoqHammer
· Coq standard library: 40%
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CoqHammer demo

examples/imp.v
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CoqHammer: premise selection

· Learning done each time the plugin is invoked
(to include all accessible facts).

· Two machine-learning filters: k-NN and naive Bayes.

· Re-uses the HOLyHammer efficient implementation
(also adapted by Sledgehammer).
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Translation: target logic

Target logic: untyped FOL with equality.
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Translation

Three functions F , G , and C .

· F : propositions→ FOL formulas
used for CIC0 terms of type Prop.

· G : types→ guards
used for CIC0 terms of type Type.

· C : all CIC0 → FOL terms
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Translation

· The function F encodes propositions as FOL formulas and is used
for terms of Coq having type Prop.

· If Γ ` t : Prop then FΓ (Πx : t.s) =FΓ (t)→FΓ ,x:t(s).
· If Γ 6` t : Prop then FΓ (Πx : t.s) = ∀x .GΓ (t, x)→FΓ ,x:t(s).

· The function G encodes types as guards and is used for terms of Coq
which have type Type.
For instance, for a (closed) type τ= Πx : α.β(x) we have

G (τ, f ) = ∀x .G (α, x)→G (β(x), f x)

· The function C encodes Coq terms as FOL terms.
· CΓ (ts) is equal to:

· ε if Γ ` ts : α : Prop,
· CΓ (t) if Γ ` s : α : Prop,
· CΓ (t)CΓ (s) otherwise.

· CΓ (λ~x : ~t.s) = F ~y where s does not start with a lambda-abstraction
any more, F is a fresh constant, ~y = FV(λ~x : ~t.s) and
∀~y .FΓ (∀~x : ~t.F ~y ~x = s) is a new axiom.
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G (τ, f ) = ∀x .G (α, x)→G (β(x), f x)

· The function C encodes Coq terms as FOL terms.
· CΓ (ts) is equal to:

· ε if Γ ` ts : α : Prop,
· CΓ (t) if Γ ` s : α : Prop,
· CΓ (t)CΓ (s) otherwise.

· CΓ (λ~x : ~t.s) = F ~y where s does not start with a lambda-abstraction
any more, F is a fresh constant, ~y = FV(λ~x : ~t.s) and
∀~y .FΓ (∀~x : ~t.F ~y ~x = s) is a new axiom.
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ATP invocation

· We use Vampire, E prover, and Z3.

· The provers may be run in parallel with different numbers of
premises and premise selection methods.
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Proof reconstruction

· Use dependencies from a successful ATP run.

· Do automatic proof search using different versions of our tactics
(implemented in Ltac), with a fixed time limit for each.

· 85% of proofs reconstructed.
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Overall hammer evaluation

All statements from the Coq standard libary

ATP success 50%

· ATPs used: E, Z3, Vampire with 30 seconds time limit

Overall success 40.8%

· 8 threads with different lemma selection, premises, provers,
reconstruction
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Conclusion

· Proof length already close to that of Isabelle/HOL.

· Improvements needed for dependent types and boolean reflection.
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Download

https://github.com/lukaszcz/coqhammer
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