
Let’s make set theory great again!

John Harrison
Amazon Web Services

AITP 2018, Aussois

27th March 2018 (10:45–11:30)

Contents

I Why types? Why not?

I Set theory as a foundation

I Formalizing mathematics in set theory

I Avoiding fake theorems
I Numeric subtypes
I Encoding undefinedness
I Reflection principles

I Relevance to AITP

I Questions / discussions

Type theory and set theory

The divide between type theory and ‘untyped’ axiomatic set theory
goes back to different reactions to the paradoxes of naive set
theory:

I Russell — introduced a system of types

I Zermelo — developed axioms for set construction

This divide is still with us today and pretty much all type theories
are (distant) descendants of Russell’s system.

Type theory and set theory

The divide between type theory and ‘untyped’ axiomatic set theory
goes back to different reactions to the paradoxes of naive set
theory:

I Russell — introduced a system of types

I Zermelo — developed axioms for set construction

This divide is still with us today and pretty much all type theories
are (distant) descendants of Russell’s system.

Type theory and set theory

The divide between type theory and ‘untyped’ axiomatic set theory
goes back to different reactions to the paradoxes of naive set
theory:

I Russell — introduced a system of types

I Zermelo — developed axioms for set construction

This divide is still with us today and pretty much all type theories
are (distant) descendants of Russell’s system.

Foundations in theorem proving

Many of the most popular interactive theorem provers are based on
type theory

I Simple type theory (HOL family, Isabelle/HOL)

I Constructive type theory (Agda, Coq, Nuprl)

I Other typed formalisms (IMPS, PVS)

Far fewer substantial systems are based on set theory:

I Metamath

I Isabelle/ZF (but much less popular than Isabelle/HOL)

I Mizar (but that layers a type system on top)

Foundations in theorem proving

Many of the most popular interactive theorem provers are based on
type theory

I Simple type theory (HOL family, Isabelle/HOL)

I Constructive type theory (Agda, Coq, Nuprl)

I Other typed formalisms (IMPS, PVS)

Far fewer substantial systems are based on set theory:

I Metamath

I Isabelle/ZF (but much less popular than Isabelle/HOL)

I Mizar (but that layers a type system on top)

Why types?

The dominance of types has come about for a mix of technical and
social reasons:

I Types make logical inference simpler (or even avoid it):
∀x : R. P(x) instead of ∀x . x ∈ R⇒ P(x)

I Types give a systematic way of assigning implicit properties: if
f : G → H is a homomorphism then you know what + means
where in f (x + y) = f (x) + f (y)

I Types are part of an overall philosophical approach to
foundations, e.g. from Martin-Löf

I Types are natural to computer scientists who develop many
theorem proving programs.

I Types are a rich topic of pure research and therefore more
‘interesting’

But not all these are good reasons, and some are perverse
incentives.

Why types?

The dominance of types has come about for a mix of technical and
social reasons:

I Types make logical inference simpler (or even avoid it):
∀x : R. P(x) instead of ∀x . x ∈ R⇒ P(x)

I Types give a systematic way of assigning implicit properties: if
f : G → H is a homomorphism then you know what + means
where in f (x + y) = f (x) + f (y)

I Types are part of an overall philosophical approach to
foundations, e.g. from Martin-Löf

I Types are natural to computer scientists who develop many
theorem proving programs.

I Types are a rich topic of pure research and therefore more
‘interesting’

But not all these are good reasons, and some are perverse
incentives.

Why types?

The dominance of types has come about for a mix of technical and
social reasons:

I Types make logical inference simpler (or even avoid it):
∀x : R. P(x) instead of ∀x . x ∈ R⇒ P(x)

I Types give a systematic way of assigning implicit properties: if
f : G → H is a homomorphism then you know what + means
where in f (x + y) = f (x) + f (y)

I Types are part of an overall philosophical approach to
foundations, e.g. from Martin-Löf

I Types are natural to computer scientists who develop many
theorem proving programs.

I Types are a rich topic of pure research and therefore more
‘interesting’

But not all these are good reasons, and some are perverse
incentives.

Why types?

The dominance of types has come about for a mix of technical and
social reasons:

I Types make logical inference simpler (or even avoid it):
∀x : R. P(x) instead of ∀x . x ∈ R⇒ P(x)

I Types give a systematic way of assigning implicit properties: if
f : G → H is a homomorphism then you know what + means
where in f (x + y) = f (x) + f (y)

I Types are part of an overall philosophical approach to
foundations, e.g. from Martin-Löf

I Types are natural to computer scientists who develop many
theorem proving programs.

I Types are a rich topic of pure research and therefore more
‘interesting’

But not all these are good reasons, and some are perverse
incentives.

Why types?

The dominance of types has come about for a mix of technical and
social reasons:

I Types make logical inference simpler (or even avoid it):
∀x : R. P(x) instead of ∀x . x ∈ R⇒ P(x)

I Types give a systematic way of assigning implicit properties: if
f : G → H is a homomorphism then you know what + means
where in f (x + y) = f (x) + f (y)

I Types are part of an overall philosophical approach to
foundations, e.g. from Martin-Löf

I Types are natural to computer scientists who develop many
theorem proving programs.

I Types are a rich topic of pure research and therefore more
‘interesting’

But not all these are good reasons, and some are perverse
incentives.

Why types?

The dominance of types has come about for a mix of technical and
social reasons:

I Types make logical inference simpler (or even avoid it):
∀x : R. P(x) instead of ∀x . x ∈ R⇒ P(x)

I Types give a systematic way of assigning implicit properties: if
f : G → H is a homomorphism then you know what + means
where in f (x + y) = f (x) + f (y)

I Types are part of an overall philosophical approach to
foundations, e.g. from Martin-Löf

I Types are natural to computer scientists who develop many
theorem proving programs.

I Types are a rich topic of pure research and therefore more
‘interesting’

But not all these are good reasons, and some are perverse
incentives.

Why types?

The dominance of types has come about for a mix of technical and
social reasons:

I Types make logical inference simpler (or even avoid it):
∀x : R. P(x) instead of ∀x . x ∈ R⇒ P(x)

I Types give a systematic way of assigning implicit properties: if
f : G → H is a homomorphism then you know what + means
where in f (x + y) = f (x) + f (y)

I Types are part of an overall philosophical approach to
foundations, e.g. from Martin-Löf

I Types are natural to computer scientists who develop many
theorem proving programs.

I Types are a rich topic of pure research and therefore more
‘interesting’

But not all these are good reasons, and some are perverse
incentives.

Why not types?

My thesis is that types, despite their merits, have significant
disadvantages:

I Types can create dilemmas or inflexibility

I Types can clutter proofs

I Subtypes may not work smoothly

I Type systems are complicated

There are simple type theories like HOL but they are the most
inflexible.

Why not types?

My thesis is that types, despite their merits, have significant
disadvantages:

I Types can create dilemmas or inflexibility

I Types can clutter proofs

I Subtypes may not work smoothly

I Type systems are complicated

There are simple type theories like HOL but they are the most
inflexible.

Why not types?

My thesis is that types, despite their merits, have significant
disadvantages:

I Types can create dilemmas or inflexibility

I Types can clutter proofs

I Subtypes may not work smoothly

I Type systems are complicated

There are simple type theories like HOL but they are the most
inflexible.

Why not types?

My thesis is that types, despite their merits, have significant
disadvantages:

I Types can create dilemmas or inflexibility

I Types can clutter proofs

I Subtypes may not work smoothly

I Type systems are complicated

There are simple type theories like HOL but they are the most
inflexible.

Why not types?

My thesis is that types, despite their merits, have significant
disadvantages:

I Types can create dilemmas or inflexibility

I Types can clutter proofs

I Subtypes may not work smoothly

I Type systems are complicated

There are simple type theories like HOL but they are the most
inflexible.

Types can create dilemmas or inflexibility

When formalizing anything intuivtively corresponding to a
predicate/set, say over some domain D

I We can formalize it as a predicate P : D → B or subset S ⊆ D

I We can introduce a new type corresponding to P

We have to make a choice, and depending on other features of the
type system, that can greatly influence how easy or hard it is to
prove something.
For example, if you prove something generic about groups over a
type, you may not be able to instantiate it later to a group over a
subset of a type.

Types can create dilemmas or inflexibility

When formalizing anything intuivtively corresponding to a
predicate/set, say over some domain D

I We can formalize it as a predicate P : D → B or subset S ⊆ D

I We can introduce a new type corresponding to P

We have to make a choice, and depending on other features of the
type system, that can greatly influence how easy or hard it is to
prove something.
For example, if you prove something generic about groups over a
type, you may not be able to instantiate it later to a group over a
subset of a type.

Subtypes may not work smoothly

There are type systems with subtypes, but many type systems do
not permit it. One special but annoyingly uniquitous case is that
you need to distinguish various different number systems

I N, N+ = N− {0}
I Z
I Q
I R
I R+ = {x | x ∈ R ∧ x ≥ 0}, R = R ∪ {−∞,+∞}
I C

You may need multiple versions of theorems, explicit or implicit
type casts, lots of complications even if the system partly hides it
from the average user.

Types can clutter proofs

Consider a very elementary construction in algebra where we start
from an arbitrary field F and construct an extension F ′ with a root
of the irreducible polynomial p:

I Take the ring of polynomials in one variable F [x] (set of finite
partial functions N→ F)

I Take the quotient F [x]/(p(x)) by the ideal generated by p
(elements are equivalence classes, i.e. sets of polynomials)

Thinking of F as a base type, we have jumped up a couple of
levels in the type hierarcy just to adjoin one root.
If we want to construct the algebraic closure of a field we have to
do this transfinitely . . .

Types can clutter proofs

Consider a very elementary construction in algebra where we start
from an arbitrary field F and construct an extension F ′ with a root
of the irreducible polynomial p:

I Take the ring of polynomials in one variable F [x] (set of finite
partial functions N→ F)

I Take the quotient F [x]/(p(x)) by the ideal generated by p
(elements are equivalence classes, i.e. sets of polynomials)

Thinking of F as a base type, we have jumped up a couple of
levels in the type hierarcy just to adjoin one root.
If we want to construct the algebraic closure of a field we have to
do this transfinitely . . .

Type systems are complicated

This inference rule is from Coq (or more precisely Matita)

46 A BI-DIRECTIONAL REFINEMENT ALGORITHM FOR CIC

(K−letcorec)

Σ�,Φ�,

let corec f1(
−−−−−→
x1

p1
: T 1

p1
) : T 1

p1+1 := t1 and . . .

and fn(
−−−−−→
xn

pn
:Tn

pn
) : Tn

pn+1 := tn

 ∈ Env

Σ� = ∅ Φ� = ∅ 1 ≤ i ≤ n

(fi : Ti) ∈ Env

(K−inductive)

(Σ�,Φ�, I) ∈ Env
Σ� = ∅ Φ� = ∅ 1 ≤ p ≤ n

(Ip
l : Π

−−−→
xl : Ul.Ap) ∈ Env

(K−constructor)

(Σ�,Φ�, I) ∈ Env
Σ� = ∅ Φ� = ∅ 1 ≤ p ≤ n 1 ≤ j ≤ mp

(kj
p : Π

−−−→
xl : Ul.K

j
p) ∈ Env

(K−lambda)

Env,Σ,Φ,Γ � T : S
Env,Σ,Φ,Γ � S �whd S� S� is a sort or a meta
Env,Σ,Φ,Γ ∪ (n : T) � u : U

Env,Σ,Φ,Γ � λn : T.u : Πn : T.U

(K−product)

Env,Σ,Φ,Γ � T : s1

Env,Σ,Φ,Γ ∪ (n : T) � U : s2

(s1, s2, s3) ∈ PTS

Env,Σ,Φ,Γ � Πn : T.U : s3

(K−letin)

Env,Σ,Φ,Γ � t : T �

Env,Σ,Φ,Γ � T : S Env,Σ,Φ,Γ � T ↓ T �

Env,Σ,Φ,Γ ∪ (x : T := t) � u : U

Env,Σ,Φ,Γ � let (x : T) := t in u : U [x/t]

(K−appl − base)

Env,Σ,Φ,Γ � h : Πx : T.U
Env,Σ,Φ,Γ � t : T � Env,Σ,Φ,Γ � T ↓ T �

Env,Σ,Φ,Γ � h t : U [x/t]

(K−appl − rec)
Env,Σ,Φ,Γ � (h t1) t2 · · · tn : T

Env,Σ,Φ,Γ � h t1 t2 · · · tn : T

(K−match)

(Σ�,Φ�, I) ∈ Env Σ� = ∅ Φ� = ∅ Env,Σ,Φ,Γ � t : T

Env,Σ,Φ,Γ � T �whd Ip
l
−→ul

−→
u�

r

Ap[
−−−→
xl/ul] = Π

−−−−→
yr : Yr.s Kj

p[
−−−→
xl/ul] = Π

−−−−−−→
xj

nj : Qj
nj .I

p
l
−→xl

−→vr j = 1 . . . mp

Env,Σ,Φ,Γ � U : V Env,Σ,Φ,Γ � V �whd Π
−−−−→
zr : Yr.Πzr+1 : Ip

l
−→ul

−→zr .s
�

(s, s�) ∈ elim(PTS)

Env,Σ,Φ,Γ � λ
−−−−−−→
xj

nj : P j
nj .tj : Tj j = 1, . . . , mp

Env,Σ,Φ,Γ � Tj ↓ Π
−−−−−−→
xj

nj : Qj
nj .U

−→vr (kp
j
−→ul

−→
xj

nj) j = 1, . . . , mp

Env,Σ,Φ,Γ � match t in Ip
l return U

[kp
1 (

−−−−−−→
x1

n1
: P 1

n1
) ⇒ t1 | . . . |kp

mp (
−−−−−−−−→
x

mp
nmp

: P
mp
nmp

) ⇒ tmp] : U
−→
u�

r t

Set theory as a foundation

We propose in some sense the ‘obvious’ foundation in set theory,
and the only innovations are a few conventions we think make
thing smoother or more natural.

I Work in a fairly standard (ZFC...?) universe of sets and
construct number systems and mathematical objects in one of
the ‘usual’ ways, probably in fairly standard first-order logic.

I Things you would express as type constraints in typed systems
are usually expressed as set membership: x : R becomes
x ∈ R etc.

I Constraints that quantify over ‘large’ collections like
w : ordinal become applications of predicates ordinal(w),
though we could support syntactic sugar like x ∈ On.

Set theory as a foundation

We propose in some sense the ‘obvious’ foundation in set theory,
and the only innovations are a few conventions we think make
thing smoother or more natural.

I Work in a fairly standard (ZFC...?) universe of sets and
construct number systems and mathematical objects in one of
the ‘usual’ ways, probably in fairly standard first-order logic.

I Things you would express as type constraints in typed systems
are usually expressed as set membership: x : R becomes
x ∈ R etc.

I Constraints that quantify over ‘large’ collections like
w : ordinal become applications of predicates ordinal(w),
though we could support syntactic sugar like x ∈ On.

Set theory as a foundation

We propose in some sense the ‘obvious’ foundation in set theory,
and the only innovations are a few conventions we think make
thing smoother or more natural.

I Work in a fairly standard (ZFC...?) universe of sets and
construct number systems and mathematical objects in one of
the ‘usual’ ways, probably in fairly standard first-order logic.

I Things you would express as type constraints in typed systems
are usually expressed as set membership: x : R becomes
x ∈ R etc.

I Constraints that quantify over ‘large’ collections like
w : ordinal become applications of predicates ordinal(w),
though we could support syntactic sugar like x ∈ On.

Set theory as a foundation

We propose in some sense the ‘obvious’ foundation in set theory,
and the only innovations are a few conventions we think make
thing smoother or more natural.

I Work in a fairly standard (ZFC...?) universe of sets and
construct number systems and mathematical objects in one of
the ‘usual’ ways, probably in fairly standard first-order logic.

I Things you would express as type constraints in typed systems
are usually expressed as set membership: x : R becomes
x ∈ R etc.

I Constraints that quantify over ‘large’ collections like
w : ordinal become applications of predicates ordinal(w),
though we could support syntactic sugar like x ∈ On.

Set theory as a machine code
The philosophy is to use set theory act as a simple,
well-understood foundation but leave the theorem proving to layers
of code, which the foundations don’t help but also don’t hinder.

I Can do some kind of ‘type checking’ for catching errors,
encouraging a disciplined style, and do some inference more
efficiently.

I Wiedijk’s paper “Mizar’s soft type theory” shows how in
principle Mizar’s type system can be understood this way,
even though in practice it’s coded separately.

I Other convenient ‘magic’ like using symmetries, transferring
results via isomorphisms, homotopy equivalence or elementary
equivalence (Urban’s Ultraviolence Axiom) is done by theorem
proving, not the foundations.

This is a computer science view, analogous to starting with
machine code as the foundation and building higher-level layers on
top.

Set theory as a machine code
The philosophy is to use set theory act as a simple,
well-understood foundation but leave the theorem proving to layers
of code, which the foundations don’t help but also don’t hinder.

I Can do some kind of ‘type checking’ for catching errors,
encouraging a disciplined style, and do some inference more
efficiently.

I Wiedijk’s paper “Mizar’s soft type theory” shows how in
principle Mizar’s type system can be understood this way,
even though in practice it’s coded separately.

I Other convenient ‘magic’ like using symmetries, transferring
results via isomorphisms, homotopy equivalence or elementary
equivalence (Urban’s Ultraviolence Axiom) is done by theorem
proving, not the foundations.

This is a computer science view, analogous to starting with
machine code as the foundation and building higher-level layers on
top.

Avoiding fake theorems

I Set theory is sometimes criticized because you get too many
identifications or spurious theorems from the constructions:
‘zero is a subset of a line’

I We propose to use definitional extension principles that merely
require a consistency proof (analogous to type definition rules
in HOL) but don’t necessarily tie

I You still get some ‘fake theorems’ if you consider everything
as a set: ∅ ⊆ anything.

I Even those can be avoided by starting with a set theory
allowing urelements (not everything has to be a set).

Numeric subtypes
The idea that the usual number systems are all overlaid with the
obvious subset relations is ubiquitous in the mathematical
literature.

I We don’t necessarily propose to help out with other analogous
conventions: 0 can also be the trivial group, 2 can be
1R +R 1R in a ring, . . .

I But the number system inclusions are so ingrained in informal
mathematics, and the profusion of different number systems is
so inconvenient, that it’s worth the effort to make this literally
true.

I Each time a new number system is constructed we show that
we could make it a superset (Q ⊆ R etc.) even if it doesn’t
arise naturally that way.

I If all else fails, just take the union of the smaller structure and
the new elements minus the isomorphic image of the smaller
one.

Encoding undefinedness (1)

There are a number of common conventions around
‘undefinedness’ in mathematics, which arguably don’t fit well with
typcial formal treatments.
Often equations are taken implicitly to include definedness: s = t
means ‘either both s and t are both undefined, or they are both
defined and equal’.

So for instance this equation includes the assertion that the sum
converges

∞∑

n=1

1/n2 = π2/6

And this one holds over R regardless of whether x and y are zero

(xy)−1 = x−1y−1

Encoding undefinedness (1)

There are a number of common conventions around
‘undefinedness’ in mathematics, which arguably don’t fit well with
typcial formal treatments.
Often equations are taken implicitly to include definedness: s = t
means ‘either both s and t are both undefined, or they are both
defined and equal’.
So for instance this equation includes the assertion that the sum
converges

∞∑

n=1

1/n2 = π2/6

And this one holds over R regardless of whether x and y are zero

(xy)−1 = x−1y−1

Encoding undefinedness (1)

There are a number of common conventions around
‘undefinedness’ in mathematics, which arguably don’t fit well with
typcial formal treatments.
Often equations are taken implicitly to include definedness: s = t
means ‘either both s and t are both undefined, or they are both
defined and equal’.
So for instance this equation includes the assertion that the sum
converges

∞∑

n=1

1/n2 = π2/6

And this one holds over R regardless of whether x and y are zero

(xy)−1 = x−1y−1

Encoding undefinedness (2)
There are a number of formal approaches, which require a lot of
complexity or a lot of radical logical changes:

I Every type is lifted and includes an ‘undefined’ element ⊥
(LCF)

I The logic explicitly supports partial terms (IMPS) or even
three-valued predicates (VDM)

In set theory we can get much of this with one trivial convention:

I Every function f : A→ B explicitly contains a domain A and
codomain B.

I Function application is defined to map f (x) = B (the set B
itself) if x 6∈ A. So f (x) ∈ B ⇔ x ∈ A (since B 6∈ B in ZF).

I This amounts to using the codomain itself as a kind of
bottom element, rather like LCF

I No theorem proving obligations we didn’t have before, and a
simple encoding of ‘undefined’ terms

Encoding undefinedness (2)
There are a number of formal approaches, which require a lot of
complexity or a lot of radical logical changes:

I Every type is lifted and includes an ‘undefined’ element ⊥
(LCF)

I The logic explicitly supports partial terms (IMPS) or even
three-valued predicates (VDM)

In set theory we can get much of this with one trivial convention:

I Every function f : A→ B explicitly contains a domain A and
codomain B.

I Function application is defined to map f (x) = B (the set B
itself) if x 6∈ A. So f (x) ∈ B ⇔ x ∈ A (since B 6∈ B in ZF).

I This amounts to using the codomain itself as a kind of
bottom element, rather like LCF

I No theorem proving obligations we didn’t have before, and a
simple encoding of ‘undefined’ terms

Reflection (1)

A common pattern in theorem proving is the following, often called
(small-scale) reflection

x

f (x)

pxq

pf (x)q

-

�

6 6

Semantics to syntax

Syntax to semantics

f
Syntactic
transform

The idea is to do most of the work in the ‘syntactic’
representation, because you can prove a more generic theorem in
this context or (in Coq) because proof/evaluation is faster there.

Reflection (2)

What about reflection in set theory?

I The basic pattern of small-scale reflection is equally applicable
in set theory; in fact the absence of types may make
evaluation functions easier

I Unlike constructive type theories, there isn’t any built-in
notion of efficient evaluation, definitional equality etc., but
one could consider defining one

ZFC offers a more interesting large-scale principle in the ‘reflection
theorem’: if φ is any formula of first-order ZFC, then there exists a
set V in which φ holds with all quantifiers relativized to V .

I May allow one to perform dynamic or large-scale reflection.

I Apossible approach to using higher-order notions, category
theory etc. without the complication of universes.

Reflection (2)

What about reflection in set theory?

I The basic pattern of small-scale reflection is equally applicable
in set theory; in fact the absence of types may make
evaluation functions easier

I Unlike constructive type theories, there isn’t any built-in
notion of efficient evaluation, definitional equality etc., but
one could consider defining one

ZFC offers a more interesting large-scale principle in the ‘reflection
theorem’: if φ is any formula of first-order ZFC, then there exists a
set V in which φ holds with all quantifiers relativized to V .

I May allow one to perform dynamic or large-scale reflection.

I Apossible approach to using higher-order notions, category
theory etc. without the complication of universes.

Reflection (2)

What about reflection in set theory?

I The basic pattern of small-scale reflection is equally applicable
in set theory; in fact the absence of types may make
evaluation functions easier

I Unlike constructive type theories, there isn’t any built-in
notion of efficient evaluation, definitional equality etc., but
one could consider defining one

ZFC offers a more interesting large-scale principle in the ‘reflection
theorem’: if φ is any formula of first-order ZFC, then there exists a
set V in which φ holds with all quantifiers relativized to V .

I May allow one to perform dynamic or large-scale reflection.

I Apossible approach to using higher-order notions, category
theory etc. without the complication of universes.

Reflection (2)

What about reflection in set theory?

I The basic pattern of small-scale reflection is equally applicable
in set theory; in fact the absence of types may make
evaluation functions easier

I Unlike constructive type theories, there isn’t any built-in
notion of efficient evaluation, definitional equality etc., but
one could consider defining one

ZFC offers a more interesting large-scale principle in the ‘reflection
theorem’: if φ is any formula of first-order ZFC, then there exists a
set V in which φ holds with all quantifiers relativized to V .

I May allow one to perform dynamic or large-scale reflection.

I Apossible approach to using higher-order notions, category
theory etc. without the complication of universes.

Relevance to AITP

Maybe thinking about foundations is not the first priority for
people interested in applying AI methods, but I would argue that it
may give a closer correspondence with informal texts, which might
help in projects to exploit that correspondence.

The original aim of the writer was to take mathematical
textbooks such as Landau on the number system,
Hardy-Wright on number theory, Hardy on the calculus,
Veblen-Young on projective geometry, the volumes by
Bourbaki, as outlines and make the machine formalize all
the proofs (fill in the gaps).

Wang “Toward Mechanical Mathematics”, 1960.

Relevance to AITP

Maybe thinking about foundations is not the first priority for
people interested in applying AI methods, but I would argue that it
may give a closer correspondence with informal texts, which might
help in projects to exploit that correspondence.

The original aim of the writer was to take mathematical
textbooks such as Landau on the number system,
Hardy-Wright on number theory, Hardy on the calculus,
Veblen-Young on projective geometry, the volumes by
Bourbaki, as outlines and make the machine formalize all
the proofs (fill in the gaps).

Wang “Toward Mechanical Mathematics”, 1960.

Questions?

