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“If we had it [a characteristica universalis],
we should be able to reason in metaphysics
and morals in much the same way as in
geometry and analysis.”

(Leibniz, 1677)

Letter from Leibniz to Gallois, 1677 (GP VII, 21-22); translation by Russel, 1900

Part A
Universal Reasoning in Meta-logic HOL
(utilising Shallow Semantical Embeddings):
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Example: Modal Logic Textbook
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Example: Modal Logic Textbook

2 BASIC MODAL LOGIC

In this section we introduce the basic modal language and its relational semantics. We define
basic modal syntax, introduce models and frames, and give the satisfaction definition. We then
draw the reader’s attention to the internal perspective that modal languages offer on relational
structure, and explain why models and frames should be thought of as graphs. Following this
we give the standard translation. This enables us to convert any basic modal formula into a first-
order formula with one free variable. The standard translation is a bridge between the modal and
classical worlds, a bridge that underlies much of the work of this chapter.

2.1 First steps in relational semantics

Suppose we have a set of proposition symbols (whose elements we typically write as p, ¢, 7 and
so on) and a set of modality symbols (whose elements we typically write as m, m’, m”, and so
on). The choice of PROP and MOD is called the signature (or similarity type) of the language; in
what follows we’ll tacitly assume that PROP is denumerably infinite, and we’ll often work with
signatures in which MOD contains only a single element. Given a signature, we define the basic
modal language (over the signature) as follows:

o u= p|TILl-pleAv|eVi|e—v|poy|(me|[m]e.

That is, a basic modal formula is either a proposition symbol, a boolean constant, a boolean
combination of basic modal formulas, or (most interesting of all) a formula prefixed by a diamond

C. Benzmiiller & D. Scott, 2018



Example: Modal Logic Textbook

2 BASIC MODAL LOGIC

In this section we introduce the basic modal language and its relational semantics. We define
basic modal syntax, introduce models and frames, and give the satisfaction definition. We then
draw the reader’s attention to the internal perspective that modal languages offer on relational
structure, and explain why models and frames should be thought of as graphs. Following this
we give the standard translation. This enables us to convert any basic modal formula into a first-
order formula with one free variable. The standard translation is a bridge between the modal and
classical worlds, a bridge that underlies much of the work of this chapter.

Syntax
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at is, a basnc modal formula is either a proposition symbol, a boolean constanl a boole:
combi asic modal formulas, or (most interesting of all) a formula
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Example: Modal Logic Textbook

A model (or Kripke model) 9 for the basic modal language (over some fixed signature) is a
triple M = (W, {R™ },.emon. V). Here W, the domain, is a non-empty set, whose elements we
usually call points, but which, for reasons which will soon be clear, are sometimes called states,
times, situations, worlds and other things besides. Each R™ in a model is a binary relation on W,
and V is a function (the valuation) that assigns to each proposition symbol p in PROP a subset
V(p) of W think of V(p) as the set of points in 9T where p is true. The first two components
(W, {R™}memop) of O are called the frame underlying the model. If there is only one relation
in the model, we typically write (W, R) for its frame, and (W, R, V') for the model itself. We
encourage the reader to think of Kripke models as graphs (or to be slightly more precise, directed
graphs, that is, graphs whose points are linked by directed arrows) and will shortly give some
examples which show why this is helpful.

Suppose w is a point in a model M = (W, {R™},,emon, V). Then we inductively define the
notion of a formula ¢ being satisfied (or true) in 9 at point w as follows (we omit some of the
clauses for the booleans):

MwbE=p iff weV(p),
MwpE=T always,
M w =L never,
Mw = iff  not M, w = ¢ (notation: M, w = ),
MuwEeAy iff  Mw ¢ and M w =P,
MwbE=p—1p  iff  Mw e or Mw =1,
M, w = (m)e iff  for some v € W such that R™wv we have M, v |= ¢,
M, w |=[m]p iff  forallv € W such that R™wv we have MM, v |= ¢.

C. Benzmiiller & D. Scott, 2018



Example: Modal Logic Textbook

A model (or Kripke model) 9 for the basic modal language (over some fixed signature) is a
triple M = (W, {R™ },.emon. V). Here W, the domain, is a non-empty set, whose elements we
usually call points, but which, for reasons which will soon be clear, are sometimes called states,
times in a model is a binary relation on W,
and | sosition symbol p in PROP a subset

V(p) Metalanguage p is true. The first two components

v, > model. If there is only one relation
in the (W, R, V) for the model itself. We
encourage the reader to think of Kripke models as graphs (or to be slightly more precise, directed
graphs, that is, graphs whose points are linked by directed arrows) and will shortly give some
examples which show why this is helpful.

Suppose w is a point in a model M = (W, {R™},,emon, V). Then we inductively define the
notion of a formula ¢ being satisfied (or true) in 9 at point w as follows (we omit some of the

clauses for the booleans): semantics

m p iff  weV(p),

MwpE=T always,
M w =L never,
Mw = iff  not M, w = ¢ (notation: M, w = ),
MuwEeAy iff  Mw ¢ and M w =P,
MwbE=p—1p  iff  Mw e or Mw =1,
M, w = (m)p iff  for some v € W such that R™wv we have M, v = ¢,
M, w = [m]e iff  forall v € W such that R™wv we have I, v |= ¢.

C. Benzmiiller & D. Scott, 2018



Example: Modal Logic Textbook

MwpE=p iff weV(p),

MwpET always,

Mw =L never,

Mw = —p  iff  not M, w = ¢ (notation: M, w & @),
MwEeAy iff  MwE=e and M ow =,
MwpE=e—1 iff  MwlEe or Mw =1,

M, w = (m)yp iff  for some v € W such that R™wv we have M, v |= ¢,
M, w = [m]e iff  forall v € W such that R™wv we have M, v = .
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Universal Logic Reasoning in Isabelle/HOL

D@d@E:e 9¢: X0 @ DR BX & @@

| 0 GodProof.thy (~/chris/trunk /tex/talks/2016-BMS/)

T 1|theory GodProof imports Main
2|

begin
typedecl i -- "type for possible worlds"
typedecl ;o -- "type for individuals"

type_synonym o = "(i=-bool)"

(* Shallow embedding modal logiclconnectives in & *)

abbreviation mneg ("—-_"[52153) where "=y . p(w) "
abbreviation mand (infixr"A"51) where "pAy op(w) A (w) "
10| abbreviation mor (infixr"v"50) where "pVi (W) v (w) "

11| abbreviation mimp (infixr"—"49) where "p—
12| abbreviation mequ (infixr"«"48) where "pe)
13| abbreviation mnegpred ("~_"[52]53) where ""®

- W) —h(w)"
- p(W)e—th(w) "
A, @ (x) (w) "

15((* Shallow embedding of generic box and diamnond operators *)
16| abbreviation mboxgen ("O") where "Or ¢ AW, YW. rwv — p(v)"
17| abbreviation mdiagen ("<") where "Or ¢ = Aw. Iv. rw v A p(v)"

19|(* Shallow embedding of constant domain quantifiers in HOL *)
20| abbreviation mall_const ("Vc") where "Vc & = Aw.Vx. B(x) (w)"
21| abbreviation mallB_const (binder"Vc"[8]9) where "Vc x. ¢(x) = Vc ¢"
22| abbreviation mexi_const ("3c") where "3Ic & = Aw.3Ix. P(x)(w)"

T 23| abbreviation mexiB_const (binder"3c"[8]9) where "Jc x. ¢(x) = Jc ¢

[V Proof state ¥/ Auto update | Update | Search v o 100% v
B v Output Query Sledgehammer Symbols

7,33 (185/4922) (isabelle,isabelle,UTF-8-Isabelle) UG IEFRIRIISMB 8:28 AM
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Universal Logic Reasoning in HOL

HOL

/

Logic L Logic L
Syntax Semantics
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Universal Logic Reasoning in HOL

HOL

Logic L Logic L
Syntax Semantics

Examples for L we have already studied:

Intuitionistic Logics, Modal Logics, Description Logics, Conditional Logics, Access Control
Logics, Hybrid Logics, Multivalued Logics, Paraconsistent Logics, Hyper-intensional
Higher-Order Modal Logic, Free Logic, Dyadic Deontic Logic, Input/Output Logic, ...

Embedding works also for quantifiers (first-order & higher-order)

C. Benzmiiller & D. Scott, 2018



Universal Logic Reasoning in HOL

HOL

Logic L Logic L
Syntax Semantics

Examples for L we have already studied:

Intuitionistic Logics, Modal Logics, Description Logics, Conditional Logics, Access Control
Logics, Hybrid Logics, Multivalued Logics, Paraconsistent Logics, Hyper-intensional
Higher-Order Modal Logic, Free Logic, Dyadic Deontic Logic, Input/Output Logic, ...

Embedding works also for quantifiers (first-order & higher-order)

HOL provers become universal logic reasoning engines!
interactive: Isabelle/HOL, PVS, HOL4, Hol Light, Cog/HOL, ...
automated: Leo-lIl, LEO-II, Satallax, TPS, Nitpick, Isabelle/HOL, ...

C. Benzmiiller & D. Scott, 2018



Part B:
Free Logic in HOL

[Free Logic in Isabelle/HOL, ICMS, 2016]
[Axiomatizing Category Theory in Free Logic, arXiv:1609.01493, 2016]
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Free Logic: Elegant Approach to Definite Description and Undefinedness

Dana Scott. "Existence and description in formal logic."
In: Bertrand Russell: Philosopher of the Century, edited
by R. Schoenman. George Allen & Unwin, London,
1967, pp. 181-200. Reprinted with additions in:

16 Philosophical Application of Free Logic, edited by K.
Lambert. Oxford Universitry Press, 1991, pp. 28 - 48.

DANA SCOTT

Existence and Description in
- Formal Logic

The problem of what to do with improper descriptive phrases has
bothered logicians for a long time. There have been three major
suggestions of how to treat descriptions usually associated with the
names of Russell, Frege and Hilbert-Bernays. The author does not
consider any of these approaches really satisfactory. In many ways
Russell’s idea is most attractive because of its simplicity. However,
on second thought one is saddened to find that the Russellian method

of elimination depends heavily_on_the_scope of the elimination.

C. Benzmiiller & D. Scott, 2018



Previous Approaches (rough sketch)

The present King of France is bald.

Russel (first approach) pkof := present King of France
bald(ix.pkof (x))

iff
(Ax.pkof () A (Vx, y.((pkof (x) A pkof () — x = y) A (Yx.pkof (x) — bald(x))

Hence, false.

C. Benzmiiller & D. Scott, 2018



Previous Approaches (rough sketch)

The present King of France is bald.

Russel (first approach) pkof := present King of France

bald(ix.pkof (x))
iff
(Fx.pkof (X)) A (Vx, y.((pkof (x) A pkof (y)) = x = y) A (Vx.pkof ((x) — bald(x))

Hence, false.

Frege
wx.pkof (x) does not denote; bald(wx.pkof (x)) has no truth value.

C. Benzmiiller & D. Scott, 2018



Previous Approaches (rough sketch)

The present King of France is bald.

Russel (first approach) pkof := present King of France
bald(ix.pkof (x))

iff
(Fx.pkof (x)) A (Yx, y.((pkof (x) A pkof (y)) — x = y) A (Vx.pkof (x) — bald(x))

Hence, false.

Frege
wx.pkof (x) does not denote; bald(wx.pkof (x)) has no truth value.

Hilbert-Bernays

If the existence and uniqueness conditions cannot be proved, then the term
w.pkof (x) is not part of the language.

C. Benzmiiller & D. Scott, 2018



Free Logic: Elegant Approach to Definite Description and Undefinedness

Existence and Description in Formal Logic (Dana Scott), 1967

Principle 1: Bound individual variables range over domain E c D
Principle 2: Values of terms and free variables are in D, not necessarily in E only.

Principle 3: Domain E may be empty

D: raw objects

values of free variables

E: existing objects *
undefined

values of bound variables

Figure: lllustration of the semantical domains of free logic

C. Benzmiiller & D. Scott, 2018



Free Logic in HOL

D: raw objects
values of free variables.

E: existing objects

values of bound varizbles

C. Benzmiiller & D. Scott, 2018

T abbreviation fThat:

(@®@E & 9¢ X000 @ OB0E B & O [[e»
) FreeFOLminimal.thy i MS/) $

typedecl i — "the type for indiviuals"
consts fExistence:: "i=bool" (" — "Existence predicate"
consts fStar:: "i" ("x") — "Distinguished symbol for undefinedness"

axiomatization where fStarAxiom: "—E(x)"

abbreviation fNot:: "bool=rbool" ("=")
where "=y = "

abbreviation fImplie: "bool=-bool=bool" (infixr "—" 49)

where "o = p—s

where "V& = vx. E(x)[EE®(x)"

abbreviation fForallBinder:: "(i=rbool)=rbool" (binder "V" [8] 9)

where "Vx. p(x) = Vp"

"(i=bool)=i" ("I")

where "I® = if 3x. E(x) A ®(x) A (Vy. (E(y) A ®(y)) — (y =x))
then THE x. E(x) A ®(x)

T abbreviation fForall:: "(i=bool)=bool" ("V")

abbreviation fThatBinder:: "(i=bool)=i" (binder
where "Ix. ¢(x) = I(p)"

abbreviation fOr (infixr "V" 51) where
abbreviation fAnd (infixr "A" 52) where "oAY = =(=pV-)"
abbreviation fEquiv (infixr "«" 50) where ") =) A(Y—p) "
abbreviation fEquals (infixr =" 56) where "x=y = x=y"
abbreviation fExists ("3") where "3 = =(V(\y.=(® y)))"
abbreviation fExistsBinder (binder [819) where "Ix. ¢(x) =

(=p) =y

v Proof state v/ Auto update  Update  Search: -
consts,
fForall :: "(i = bool) = bool"

B v Output Query Sledgehammer Symbols

17,24 (511/4534) (isabelle,isabelle, UTF-8-Isabelle) uc

100%

S3U03YL 2MIS PPPPIS UONEINAWNG0Q




Free Logic in HOL

abbreviation fForall ("V") (*Free universal quantification*)
where "V = Vx. E x — & x"

abbreviation fForallBinder (binder "V" [8] 9) (*Binder notation*)
where "Vx. ¢ x = Vp"

A
abbreviation fImplies:: "bool=rbool=>bool" (infixr "—" 49)
where "p—y) = p—y"
abbreviation fForall:: "(i=bool)=bool" ("V") §
‘ where "V& = Vx. E(x)gm®(x)" °
[D:lrawobjects) abbreviation fForallBinder:: "(i=>bool)=bool" (binder "V" [8] 9) ES
[a—— where "x, p(x) = V" H
abbreviation fThat:: "(i=bool)=-i" ("I") v
where "I® = if 3x. E(x) A ®(x) A (Vy. (E(y) A @(y)) — (y = x))
E: existing objects . then THE x. E(x) A ®(x)
values of bound variables CEanel else x"
abbreviation fThatBinder:: "(i=rbool)=i" (binder "I" [8] 9)
where "Ix. p(x) = I(p)"
abbreviation fOr (infixr "V" 51) where "¢Vi = (=p)—"
abbreviation fAnd (infixr "A" 52) where "wAy = =(=pV-i)"
T T ST 2o TL VA £ 2 D PR 1Y NI RS R LSO W N e L
abbreviation fThat:: "(i=bool)=1i" ("I")
where "I® = if Ix. E(x) A ®(x) A (Vy. (E(y) A @(y)) — (y = x))
then THE x. E(x) A ®(x)
else %"
abbreviation fThatBinder:: "(i=bool)=i" (binder "I" [8] 9)
where "Ix. ¢(x) = I(p)"
17,24 (511/4534) (isabelle,isabelle UTF-8-Isabelle) UG IEEEERVE 1:36 AM
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Exemplary Case Study: Exploration of Axioms Sets for Category Theory

C. Benzmiiller & D. Scott, 2018
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Axioms Set |
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Dana Scott
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Exemplary Case Study: Exploration of Axioms Sets for Category Theory

Axioms Set |

Generalized
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Exemplary Case Study: Exploration of Axioms Sets for Category Theory
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Exemplary Case Study: Exploration of Axioms Sets for Category Theory
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Generalized
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Axioms Set IV
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Dana Scott
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Exemplary Case Study: Exploration of Axioms Sets for Category Theory
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Exemplary Case Study: Exploration of Axioms Sets for Category Theory

Axioms Set |

Generalized
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‘ 1992

Axioms Set Il
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Scott 1977 Dana Scott's
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all equivalent?

Dana Scott
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Preliminaries

Morphisms: objects of type of i (raw domain D)

Partial functions:

domain dom oftypei—i
codomain cod oftypei—i
composition . of typei — i — i (resp. i Xi — i)

Partiality of “” handled as expected:

a - b may be non-existing for some existing morphisms a and b.

D: raw objects

E: existing objects

C. Benzmiiller & D. Scott, 2018




Preliminaries

Morphisms: objects of type of i (raw domain D)

Partial functions:

domain dom oftypei—i
codomain cod oftypei—i
composition . of typei — i — i (resp. i Xi — i)
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Preliminaries

Morphisms: objects of type of i (raw domain D)

Partial functions:

domain dom oftypei—i

codomain cod oftypei—i

composition . of typei — i — i (resp. i Xi — i)
= denotes Kleene equality: xzy=(ExVEy) > x=y

(where = is identity on all objects of type i, existing or non-existing)

=~ js an equivalence relation: SLEDGEHAMMER.
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Preliminaries

Morphisms: objects of type of i (raw domain D)

Partial functions:

domain dom oftypei—i

codomain cod oftypei—i

composition . of typei — i — i (resp. i Xi — i)
= denotes Kleene equality: xzy=(ExVEy) > x=y

(where = is identity on all objects of type i, existing or non-existing)

=~ js an equivalence relation: SLEDGEHAMMER.

~ denotes existing identity: x=y=ExAEyAx=y

=~ is symmetric and transitive, but lacks reflexivity: SLebceHAMMER, NiTPick.
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Preliminaries

» =~ equivalence relation on E, empty relation outside E

» 1/0#1/0 1/0%2/0

> Ix.pkoFrance(x) # Ix.pkoFrance(x)
Ix.pkoFrance(x) # Ix.pkoPoland(x)

= denotes Kleene equality: xzy=(ExVEy) > x=y

(where = is identity on all objects of type i, existing or non-existing)

=~ js an equivalence relation: SLEDGEHAMMER.

~ denotes existing identity: x=y=ExAEyAx=y

=~ is symmetric and transitive, but lacks reflexivity: SLebceHAMMER, NiTPick.
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From Monoids to Categories

Monoid
A monoid is an algebraic structure (S, o), where o is a binary operator on set S,

satisfying the following properties:

Closure: Ya,beS.aobeSs
Associativity:  Va,b,ce€ S.ao(boc)=(aob)oc
Identity: dids € S.Ya e S.idsoa=a=aoids

That is, a monoid is a semigroup with a two-sided identity element.

C. Benzmiiller & D. Scott, 2018



From Monoids to Categories

We employ a partial, strict binary composition operation -
Left and right identity elements are addressed in C;, D;, .

Categories: Axioms Set |

Strictness E(x-y) — (Ex AEy)
Existence E(x-y) — (ExNEyANJzz-z=zAX-2=XAZ-y=2Y))
Associativity x-(y-z2)=(x-y) -z

Codomain Vy.AiID@) Ai-y=y

Domain Vx.AjIDG) Ax-j=x

Sozmh

where [ is an identity morphism predicate:

IDG)=(Vx. E(i-x) > i-x=2x)AVx. E(x-i) > x-i=x)

C. Benzmiiller & D. Scott, 2018
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We employ a partial, strict binary composition operation -
Left and right identity elements are addressed in C;, D;, .

Categories: Axioms Set |

Strictness E(x-y) — (Ex AEy)
Existence E(x-y) — (ExNEyANJzz-z=zAX-2=XAZ-y=2Y))
Associativity x-(y-z2)=(x-y) -z

Codomain Vy.AiID@) Ai-y=y

Domain Vx.AjIDG) Ax-j=x

Sozmh

where [ is an identity morphism predicate:

IDG)=(Vx. E(i-x) > i-x=2x)AVx. E(x-i) > x-i=x)

Monoid
Closure: Ya,beS.aobesS
Associativity:  Va,b,c€ S.ao(boc)=(aob)oc
Identity: dids € S.Yae S.idsoa=a=aoids
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We employ a partial, strict binary composition operation -
Left and right identity elements are addressed in C;, D;, .

Categories: Axioms Set |

Strictness E(x-y) — (Ex AEy)
Existence E(x-y) — (ExNEyANJzz-z=zAX-2=XAZ-y=2Y))
Associativity x-(y-z2)=(x-y) -z

Codomain Vy.AiID@) Ai-y=y

Domain Vx.AjIDG) Ax-j=x

Sozmh

where [ is an identity morphism predicate:

IDG)=(Vx. E(i-x) > i-x=2x)AVx. E(x-i) > x-i=x)

Experiments with Isabelle/HOL

e The i in axiom C is unique: SLEDGEHAMMER.
e The j in axiom D is unique: SLEDGEHAMMER.
e However, the i and j need not be equal: Nitpick

C. Benzmiiller & D. Scott, 2018



From Monoids to Categories

We employ a partial, strict binary composition operation -
Left and right identity elements are addressed in C;, D;, .

Categories: Axioms Set |

Strictness E(x-y) — (Ex AEy)
Existence E(x-y) — (ExNEyANJzz-z=zAX-2=XAZ-y=2Y))
Associativity x-(y-z2)=(x-y) -z

Codomain Vy.AiID@) Ai-y=y

Domain Vx.AjIDG) Ax-j=x

Sozmh

where [ is an identity morphism predicate:

IDG)=(Vx. E(i-x) > i-x=2x)AVx. E(x-i) > x-i=x)
Experiments with Isabelle/HOL

e The left-to-right direction of E is implied: SLEDGEHAMMER.
Ex-y) > (ExANEYyANQzz - 2=2ZAX-2=2XANZ-y=2Y))

C. Benzmiiller & D. Scott, 2018



From Monoids to Categories

We employ a partial, strict binary composition operation -
Left and right identity elements are addressed in C;, D;, .

Categories: Axioms Set |

Strictness E(x-y) — (Ex AEy)
Existence E(x-y) — (ExNEyANJzz-z=zAX-2=XAZ-y=2Y))
Associativity x-(y-z2)=(x-y) -z

Codomain Vy.AiID@) Ai-y=y

Domain Vx.AjIDG) Ax-j=x

Sozmh

where [ is an identity morphism predicate:

IDG)=(Vx. E(i-x) > i-x=2x)AVx. E(x-i) > x-i=x)
Experiments with Isabelle/HOL

e Model finder Nirprick confirms that this axiom set is consistent.
¢ Even if we assume there are non-existing objects (dx.—(Ex)) we get consistency.

C. Benzmiiller & D. Scott, 2018



Interaction: Dana — Christoph — Isabelle/HOL

I Dana Scott <dana.scott@cs.cmu.edu>
tome |~

> On Aug 5, 2016, at 11:00 PM, Christoph Benzmueller <c.benzmueller@gmail.com> wrote:
>

> When we take IDD(i) as

> (all x)[ E(i.x) ==>ix==x] &

> (all X)[ E(x.i) ==>x.i == x]

> and replace ID(i) in our SACDE-axioms by IDD(i) then | can show that

> ID(I) and IDD(i) are equivalent. See attachment New_axioms_9.png.

>

> So IDD(i) seem suited as a notion of identity morphism.

mmprised, because | did not see how to prove:

(@ll i) IDD(i) ==> ii== ]

| have to think about this. | hate it when computers are
smarter than | am!

Ig&ssCand D have to be used.

ﬁ Christoph Benzmueller <c.benzmueller@gmail.com>

to Dana '~

C.

8/6/16

8/6/16

Hi Dana, see the first attachment of my prvious Mail. C and S are used for this. Its called IDD-help1.

C. Benzmiiller & D. Scott, 2018




Interaction: Dana — Christoph — Isabelle/HOL

ﬁ Christoph Benzmueller <c.benzmueller@gmail.com> @ 7/23/16 «
to Dana [~

Dana,
here are the results of the experiments; doesn't look too good.
On Fri, Jul 22, 2016 at 11:43 PM, Dana Scott <dana.scott@cs.cmu.edu> wrote:
> On Jul 21, 2016, at 9:32 AM, Christoph Benzmueller <c.benzmueller@gmail.com> wrote:
: The F-axioms are all provable from the old S-axioms.
> But D2, D3 and E3 are not.
| think | see the trouble with those D axioms. But E3 is very odd.

E3: E(x.y) ==> (exist i)[ Id(i) & x.(i.y) == x.y |

You see, by the S-axioms, if you assume E(x.y), then E(x) & E(y) & E(cod(x))
follows. So the "i" in the conclusion of E3 ought to be "cod(x)".

Please check, therefore, whether this is provable from the S-axioms:
(all x) Id(cod(x))

Apparently it isn't. See file Scott_new_axioms_4.png; the countermodel is presented in the lower window; he have:

dom(i1)=i1, dom(i2)=i2, dom(i3)=i3
cod(i1)=i1, cod(i2)=i2, cod(i3)=i3
i1.i1=i1, i1.i2 3

Countermodel by

Nitpick
converted by me

into a readable form

i3.i
E(i1

| have briefly checked it; it seems to validate each S-axiom.

If this is OK_then E3 should have been provable,

C. Benzmilller & D. Scott, 2018



Interaction: Dana — Christoph — Isabelle/HOL

ﬁ Christoph Benzmueller <c.benzmueller@gmail.com>
to Dana [~

@ 7/23/16

«

Dana,

here are the results of E)(\\ S\'} \A\\\ /1 ‘ l
| (-

On Fri, Jul 22, 2016 at]

> On Jul 21, 2016, &

2 ToEsams Jova_| <ol
W

p Hlae

AR

| think | see the trou
E3: E(x.y) ==> (exis

You see, by the S-a:

follows. So the "i" ing

Please check, there

wp;‘

(all x) Id(cod(x)

=i2, dom(i3)=i3
, cod(i3)=i3
i3

i3.i1=i3, i3.25i3, i3.13=i3
E(i1).E(12), ~E(i3)

| have briefly checked it; it seems to validate each S-axiom.

If this is OK_then E3 should have been provable,

Countermodel by

Nitpick
converted by me

into a readable form

Apparently it isn't. See file Scott_new_axioms_4.png; the countermodel is presented in the lower window; he have:
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From Monoids to Categories

Axioms Set Il is developed from Axioms Set | by Skolem-
ization of i and j in axioms C and D. We can argue
semantically that every model of Axioms Set | has such
functions. The strictness axiom § is extended, so that
strictness is now also postulated for the new Skolem func-
tions dom and cod.

Categories: Axioms Set Il

k_.

S;  Strictness E(x-y) = (Ex A Ey) A (E(dom x) — Ex) A (E(cod y) — Ey)

A;  Associativity x-(y-)=@x-y) -z
i Codomain Ey — (ID(cod y) A (cod y) -y =)

C
D; Domain Ex — (ID(dom x) A x - (dom x) = x)

Categories: Axioms Set |
Strictness E(x-y) — (Ex A Ey)

Associativity x-(y-z)=@-y)-z
Codomain VyAiID@) Ai-y=y
Domain Vx.3jIDG)Ax-j=x

Sozln

C. Benzmiiller & D. Scott, 2018

E; Existence E(x-y) «— (ExANEYAN@z.z- 22 ZAX-2=2xAZ-y=Y))

Existence E(x-y) — (ExNEyANJzz-z=zAX-22XAZ-y2Y))




From Monoids to Categories __
Axioms Set Il is developed from Axioms Set | by Skolem-
ization of i and j in axioms C and D. We can argue
semantically that every model of Axioms Set | has such

functions. The strictness axiom S is extended, so that

strictness is now also postulated for the new Skolem func-
tions dom and cod.

Categories: Axioms Set Il
S;;  Strictness E(x-y) — (Ex A Ey) A (E(dom x) — Ex) A (E(cod y) — Ey)
E; Existence Ex-y) — (ExNEyAN@Qzz-2=2ZAXx-2=2ZXANZ-y2Y))
A;  Associativity x-(y-)=@x-y) -z

C; Codomain Ey — (ID(cod y) A (cod y) -y = y)

D; Domain Ex — (ID(dom x) A x - (dom x) = x)

Experiments with Isabelle/HOL

e Consistency holds (also when 3x.—(Ex)): confirmed by Nitpick.
o Axiom Set Il implies Axioms Set |: easily proved by SLEDGEHAMMER.
e Axiom Set | also implies Axioms Set Il (by semantical means on the meta-level)
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From Monoids to Categories

In Axioms Set lll the existence axiom E is simplified by

taking advantage of the two new Skolem functions dom
and cod.

Categories: Axioms Set Il
Sii  Strictness E(x-y) = (Ex A Ey) A (E(dom x) — Ex) A (E(cod y) — Ey)
E;; Existence E(x-y) « (dom x = cod y A E(cod y))
Ay Associativity x-(y-2)=(x-y)-z
C;; Codomain Ey — (ID(cod y) A (cod y) -y =)
D;;  Domain Ex — (ID(dom x) A x - (dom x) = x)

Categories: Axioms Set Il
S;  Strictness E(x-y) = (Ex A Ey) A (E(dom x) — Ex) A (E(cod y) — Ey)
E; Existence E(x-y) —« (ExANEyANJzz-z=zAX-Z2ZXAZ-y=2Y))
A;  Associativity x-(y-z)=@-y) -z
C; Codomain Ey — (ID(cod y) A (cod y) -y =)
D; Domain Ex — (ID(dom x) A x - (dom x) = x)
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From Monoids to Categories

In Axioms Set Il the existence axiom E is simplified by

taking advantage of the two new Skolem functions dom
and cod.

Categories: Axioms Set Il
Sii  Strictness E(x-y) = (Ex A Ey) A (E(dom x) — Ex) A (E(cod y) — Ey)
E;; Existence E(x-y) « (dom x = cod y A E(cod y))
Ay Associativity x-(y-2)=(x-y)-z
C;; Codomain Ey — (ID(cod y) A (cod y) -y =)
D;;  Domain Ex — (ID(dom x) A x - (dom x) = x)

Experiments with Isabelle/HOL

e Consistency holds (also when 3x.—(Ex)): confirmed by Nitpick.

o The left-to-right direction of existence axiom E is implied: SLEDGEHAMMER.
e Axioms Set Il implies Axioms Set |l: SLEDGEHAMMER.

o Axioms Set Il implies Axioms Set |ll: SLEDGEHAMMER.

C. Benzmiiller & D. Scott, 2018



Interesting Model (idempotents, but no left- & right-identities)

ODE®E: & 9 e DE Q@ CEHEE:E & @ + -

0 AxiomaticCategoryTheorySimplifiedAxiomSetlE1.thy (~/chris/trunk/tex/talks /2018-AITP/DEMO/) <

uonEIURWN0Q

SILOBYL  BIBIS  IDEPIS

153|context (* Axiom Set III *)
154|assumes
155| Siiir "(E(x:y) — (E x AE y)) A (E(dom x ) = E x) A (E(cod y) — E y)" and
156| Eiiit "E(x'y) « (dom x cod y A E(cod y))" and
157| Auir "x:(y-z) = (xy)-z" and
158| Ciiis "E 'y — (ID(cod y) A (cod y)y = y)" and
159| Diiit "E x — (ID(dom x) A x-(dom x) = x)"
160|begin
161| (* lemma EiFromIII: "E(xy) « (E X AEy A (3z. zz X z A xz =X Azy Xy))" *)
162| lemma E;FromIIT: "E(xy) « (E x A E y)" nitpick [showllall,format=2] (*Countermodel*) «
163|end
V| Proof state v Auto update Update  Search: v 100% <
Nitpicking formula...
ef Nitpick found a counterexample for card i = 3:
© Free variables:
X = i,
y = i,
Constants:
codomain = (Ax. _)(i; := i1, ip := i, i3 := i3)
op - = (Ax. _)
((i1, i1) iy, (i1, 12) := i3, (i1, i3) i3, (i2, 1) := i3,
(i, i2) := iz, (d2, 13) := i3, (i3, 41) := i3, (i3, 12) := i3,
(i3, i3) := i5)
domain = (Ax. _)(i: i1, iz := iz, iz := i3)
F = (\x (i, = Trua i. = Trua i. := Falca)
B w Output Query Sledgehammer Symbols
162,63 (6973/30779) (isabelle,isabelle,UTF-8-Isabelle) UG 1 error(s)3:46 PM
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Interesting Model (idempotents, but no left- & right-identities)

&

®
+
I

DEd@E & 9 ¢ X PDE-B@F TEEE:H

0 AxiomaticCategoryTheorySimplifiedAxiomSetlE1.thy (~/chris/trunk/tex/talks /2018-AITP/DEMO/) <

153|context (* Axiom Set III *) [x]

154|assumes

155| Siiir "(E(x:y) — (E x AE y)) A (E(dom x ) = E x) A (E(cod y) — E y)" and

156| Eiiir "E(x-y) « (dom x = cod y A E(cod y))" and 9

157| At "x-(y-z) = (xy)z" and 2

158| Ciii: "E y — (ID(cod y) A (cod y)y = y)" and g

159| Disir "E x — (ID(dom x) A x-(dom x) = x)" g

160|begin g

161| (* lemma EiFromIII: "E(xy) « (E X AEy A (3z. zz X z A xz =X Azy Xy))" *)

162| lemma E;FromIIT: "E(xy) « (E x A E y)" nitpick [showllall,format=2] (*Countermodel*) « 2

163|end 2

2

| Proof state v Autoupdate  Update  Search: v o1w00% S

Nitpicking formula...

Nitpick found t le f d i = 3
T itpick found a counterexample for card i EX“&\‘MS: /1‘ :z (A‘Aﬂu&}: 3

Free variables:

X = i,
P Jow | Cod
Constants: w

codomain = (Ax. _)(iy := i1, ip := i, i5:

op - = (x. ) _ A A

WP wls
www“

1
A
<}
8

((i1, 1) (i1, ip) := i3, (diy,
(iz, i2) (iz, 13) -
(i3, i5) a 2 Q‘
domain = (Ax. _ iy, ip := iz, i3
Fo= (Ox Vi - ia o= True i 3 3 3

B w Output Query Sledgehammer Symbols

162,63 (6973/30779) (isabelle,isabelle,UTF-8-Isabelle) UG IR 1 error(s)3:46 PM
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From Monoids to Categories

Axioms Set IV simplifies the axioms C and D. However,
as it turned out, these simplifications also require the ex-
istence axiom E to be strengthened into an equivalence.

Categories: Axioms Set IV

I
==

S;,  Strictness E(x-y) — (Ex A Ey) A (E(dom x) — Ex) A (E(cod y) — Ey)

E;,  Existence E(x-y) & (dom x = cod y A E(cod y))

A; Associativity x-(y-2)=(x-y)-z
C;,, Codomain (cody)-y=y
D;, Domain x - (dom x) = x

Categories: Axioms Set Il

Siii  Strictness E(x-y) — (Ex A Ey) A (E(dom x) — Ex) A (E(cod y) — Ey)

i  Existence E(x-y) « (domx = cod y A E(cod y))

E

A Associativity x-(y-z2)=@x-y) -z

Cii;  Codomain Ey — (ID(cod y) A (cod y) -y =)
D,

i Domain Ex — (ID(dom x) A x - (dom x) = x)
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From Monoids to Categories

Axioms Set IV simplifies the axioms C and D. However,
as it turned out, these simplifications also require the ex-
istence axiom E to be strengthened into an equivalence.

Categories: Axioms Set IV

*
1
=

S;,  Strictness E(x-y) = (Ex A Ey) A (E(dom x) — Ex) A (E(cod y) — Ey)

E;,  Existence E(x-y) & (dom x = cod y A E(cod y))

A; Associativity x-(y-2)=(x-y)-z
C;, Codomain (cody)-y=y
D;, Domain x - (dom x) = x

Experiments with Isabelle/HOL

e Consistency holds (also when Jx.—(Ex)): confirmed by Nitpick.

o Axioms Set IV implies Axioms Set |ll: SLEDGEHAMMER.
o Axioms Set Il implies Axioms Set |V: SLEDGEHAMMER.

C. Benzmiiller & D. Scott, 2018




From Monoids to Categories __
Axioms Set V simplifies axiom E (and S).

Now, strictness of - is implied. E
p &g

Categories: Axioms Set V (Scott, 1977)

S1  Strictness E(dom x) — Ex

S2  Strictness E(cod y) — Ey

S3  Existence E(x-y) & domx =~ cod 'y
S4  Associativity x-(y-2)=(x-y)-z

S5 Codomain (cody)-y=y

S6  Domain x-(domx) = x

Categories: Axioms Set IV
S;,  Strictness E(x-y) — (Ex A Ey) A (E(dom x) — Ex) A (E(cod y) — Ey)
E;  Existence E(x-y) & (dom x = cod y A E(cod y))
A, Associativity x-(y-z)=(x-y)-z
C;, Codomain (cody)-y=y
D;, Domain x - (dom x) = x
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From Monoids to Categories h_

Axioms Set V simplifies axiom E (and S).

Now, strictness of - is implied.
p &g

Categories: Axioms Set V (Scott, 1977)

S1
S2
S3
S4
S5
S6

Strictness
Strictness
Existence
Associativity
Codomain
Domain

E(dom x) — Ex

E(cod y) = Ey

E(x-y) & domx ~ cod y
x(yr=@ey)z
(cody)-y=y
x-(domx)=x

Experiments with Isabelle/HOL

e Consistency holds (also when Jx.—(Ex)): confirmed by Nitpick.
e Axioms Set V implies Axioms Set IV: SLEDGEHAMMER.
o Axioms Set IV implies Axioms Set V: SLEDGEHAMMER.

C. Benzmiiller & D. Scott, 2018



Demo

IS &9 ¢ XA & C

| Proof state

Nitpicking formula...
Nitpick found a model for card i = 2:

Constants:
codomain = (Ax. _) (i := i;, i := i)
op - = (Ax. _)((i1, d1) =41, (41, 12)
domain = (Ax. _)(iy := ii, iz := i5)
B ¥ Output Query Sledgehammer Symbols

317,25 (11885/41517)

C. Benzmiiller & D. Scott, 2018

=i,

v Autoupdate  Update  Search:

(12, i1) := i1, (i2, i2) := i2)

(isabelle,isabelle,UTF-8-Isabelle)

BE BX # ©@e& |e»
O AxiomaticCategoryTheory.thy (~/chris/trunk/tex/talks /2017-BMG-Tag/DEMO/) [
4|context -- {* Axiom Set V *}
305|assumes
306
307| s1: "E(dom x) — E x" and
308| s2: "E(cod y) — E y" and
309| S3: "E(x-y) «> dom X ~ cod y" and =
310| S4: "x-(y-z) = (xy)-z" and
311f s5: “(cod y)-y & y" and
312 s6: "x-(dom x) = x"
313
314|begin
i3
316 lemma True -- {* Nitpick finds a model *}
317 nitpick [satisfy, usEr_axioms. show_all, format = 2, expect = genuine] oops
318
319| 1lemma assumes "Jx. —(E x)" shows True =-- {* Nitpick finds a model *}
320 nitpick [satisfy, user_axioms, show_all, format = 2, expect = genuine] oops
321
322| 1lemma assumes "(3Ix. —(E x)) A (Ix. (E x))" shows True -- {* Nitpick finds a model *}
323 nitpick [satisfy, user_axioms, show_all, format = 2, expect = genuine] oops
224

v 100% O

UG EEEEESMB 12:42 PM

uoneIuaLINIOg
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Cats & Alligators
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MATHEMATICAL LIBRARY
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|| ANDRE SCEDROV
|

l
{
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1.1. BASIC DEFINITIONS

The theory of CATEGORIES is given by two unary operations and a
binary partial operation. In most contexts lower-case variables are used
for the ‘individuals’ which are called morphisms or maps. The values of
the operations are denoted and pronounced as:

Ox  the source of x ,
x0O  the rarget of x ,

xy the composition of x and y .
The axioms:

T xy i defined iff xD =0y,

%(Dx)D=Dx and DO(O) = x0, P25

B (Ox)x=x and x(x0)=x, FB_I:

Ak O(y) = 06(@y) and ()0 = (DO, B4b
B x(y2) =)z

1.11. The ordinary equality sign = will be used only in the symmetric
sense, to wit: if either side is defined then so is the other and they are
equal. A theory, such as this, built on an ordered list of partial oper-
ations, the domain of definition of each given by equations in the
previous, and with all other axioms equational, is called an ESSENTIAL-
LY ALGEBRAIC THEORY.

1.12. We shall use a venturi-tube >= for directed equality which means: if
the left side is defined then so is the right and they are equal. The axiom
that O(xy) = O(x(Oy)) is equivalent, in the presence of the earlier
axioms, with O(xy)>=0Ox as can be seen below.

1.13. O(0Ox) = Ox because O(0x) = O((Ox)0) = (Ox)O = Ox. Simi-
larly (x0)0 = x0O0.
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Cats & Alligators

Categories: Original axiom set by
Freyd and Scedrov (modulo notation)

A1

A2a
A2b
A3a
A3b
Ada
Adb
A5

e Consistency? — Nitpick finds a model.

E(x-y) & domx =cody
cod(dom x) = dom x
dom(cod y) = cod y

x - (dom x) = x
(cody)-y=y

dom(x - y) = dom((dom x) - y)
cod(x-y) = cod(x - (cod y))
x-(y-=EE-y-z

Experiments with Isabelle/HOL

e Consistency when assuming 3x.—Ex — Nitpick does not find a model.
e lemma (dx.—Ex) — False: SLEDGEHAMMER. (Problematic axioms: A1, A2a,A3a)

C. Benzmiiller & D. Scott, 2018




Cats & Alligators

Categories: Original axiom set by
Freyd and Scedrov (modulo notation)

A1

A2a
A2b
A3a
A3b
Ada
Adb
A5

e Consistency? — Nitpick finds a model.

E(x-y) & domx =cody
cod(dom x) = dom x
dom(cod y) = cod y

x - (dom x) = x
(cody)-y=y

dom(x - y) = dom((dom x) - y)
cod(x-y) = cod(x - (cod y))
x-(y-@E-y-z

Experiments with Isabelle/HOL

e Consistency when assuming 3x.—Ex — Nitpick does not find a model.
e lemma (dx.—Ex) — False: SLEDGEHAMMER. (Problematic axioms: A1, A2a,A3a)

When interpreted in free logic, then the axioms of Freyd and Scedrov are flawed:
Either all morphisms exist (i.e., - is total), or the axioms are inconsistent.

C. Benzmiiller & D. Scott, 2018




Demo

NORTH-HOLLAND

0 AxiomaticCategory Theory.thy (~/ chris /trunk /tex /talks/ 2017-BMG-Tag/)

854
855
856
857
858|
859
860
861
862
863
864
865
866
867
868|
869
870
871
872
873
874
875
876
877
878|
879

(ategories,
Allegories

PETER J. FREYD
ANDRE SCEDROV

context -- {* Axiom Set VI (Freyd and Scedrov) in their notation *}
assumes

AL: "Efxy) & (x0 ¥ Oy)* and
Aza: "((Ox)0) = Ox" and
A2b: "O(xO) = Ox" and
A3a: " (O0x)-x “ and
A3b: "x-(xO) and
Ada: "O(xwy) = O(x(Oy))" and
Adb: " (x-y)D (x0)-y)O" and
AS: "xe(yz) 2 (xy)-z"
begin 0
lemma InconsistencyAutomatic: "(3x. =(E x)) — False" -
lemma InconsistencyInteractive: assumes NEx: "Jx. —(E x)" shows Fa_.
proof -
-- {* Let @{text "a"} be an undefined object *}
obtain a where 1: "—=(E a)" using assms by auto
.- {* We instantiate axiom @{text "A3a"} with @{text "a"}. ¥}
have 2: "(Oa).a ¥ a" using A3a by blast
-- {* By unfolding the definition of @{text "="} we get from 1 t
not defined. This is
easy to see, since if @{text "(Da)-a"} were defined, we als

Search: 100%

goal (1 subgoal):

1.

North-Holland

C. Benzmiiller & D. Scott, 2018
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Cats & Alligators

Categories: Axioms Set VI
(Freyd and Scedrov, when corrected)

A1

A2a
A2b
A3a
A3b
Ada
Adb
A5

E(x-y) & domx =~ cody
cod(dom x) = dom x
dom(cod y) = cod y

x - (dom x) = x
(cody)-y=y

dom(x - y) = dom((dom x) - y)
cod(x -y) = cod(x - (cod y))
x-(y-EE-y-z
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Cats & Alligators —

Categories: Axioms Set VI Il -m
(Freyd and Scedrov, when corrected) -/
A1 E(x-y) & domx =~ cody ~ =

A2a cod(dom x) = dom x

A2b  dom(cod y) = cod y

A3a x-(domx)=x

A3b  (cody)-y=y

Ada  dom(x-y) = dom((dom x) - y)
Adb  cod(x-y) = cod(x - (cod y))
A5 x-y=kx-y-z

Experiments with Isabelle/HOL

e Consistency holds (also when Jx.—(Ex)): confirmed by Nirpick.
e Axioms Set VI implies Axioms Set V: SLEDGEHAMMER.

o Axioms Set V implies Axioms Set VI: SLEDGEHAMMER.

¢ Redundancies:

— The A4-axioms are implied by the others: SLEDGEHAMMER.

— The A2-axioms are implied by the others: SLEDGEHAMMER.

C. Benzmiiller & D. Scott, 2018



Cats & Alligators .

Maybe Freyd and Scedrov do not assume a free logic. M. .
In algebraic theories free variables often range over exist-
ing objects only. However, we can formalise this as well: .

Categories: “Algebraic reading” of axiom set by Freyd and Scedrov.
A1 VYxy. E(x-y) & domx = cody
A2a  VYx. cod(dom x) = dom x
A2b  Vy. dom(cod y) = cod y
A3a Vx.x-(domx)=x
A3b  Vy.(cody)-y=y
Ada  Vxy. dom(x -y) = dom((dom x) - y)
Adb  Vxy. cod(x-y) = cod(x - (cod y))
A5 Vxyz.x-(y-2)=(x-y)-z

Experiments with Isabelle/HOL

e Consistency holds (also when Jx.—(Ex)): confirmed by Nitpick.
e However, none of V-axioms are implied: Nirpick.
e For equivalence to V-axioms: add strictness of dom, cod, -, SLEDGEHAMMER.
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Cats & Alligators — =
|
Maybe Freyd and Scedrov do not assume a free logic. h _?_

In algebraic theories free variables often range over exist-
ing objects only. However, we can formalise this as well:

Categories: “Algebraic reading” of axiom set by Freyd and Scedrov.

A1l

A2a
A2b
A3a
A3b
Ada
Adb
A5

VYxy. E(x-y) & domx = cody
Vx. cod(dom x) = dom x

Yy. dom(cod y) = cod y

VYx. x - (dom x) = x

Vy. (cody)-y=y

VYxy. dom(x - y) = dom((dom x) - y)
VYxy. cod(x - y) = cod(x - (cod y))
Vxyz.x-(y-z)=(x-y)-z

Experiments with Isabelle/HOL

But: Strictness is not mentioned in Freyd and Scedrov!
And it could not even be expressed axiomatically, when variables range over of
existing objects only. This leaves us puzzled about their axiom system.

Hence, we better prefer the Axioms Set V by Scott (from 1977).

C. Benzmiiller & D. Scott, 2018



Part D: Some Reflections
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Some Reflections

» Domain expert (Dana) — tool expert (myself) — proof assistant (Isabelle)
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Some Reflections

» Domain expert (Dana) — teetexpert{mysety — proof assistant (Isabelle)
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Some Reflections

> Demain-expert{Bana) — tootexpert{mysely — proof assistant (Isabelle) ?
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Some Reflections

> Domaif-expert{Bana)y — tootexpert{rmyselfy — proof assistant (Isabelle) ?

» Automation granularity much better than expected

D@5 & 9@ X DA & C BE X & @

© AxiomaticCategoryTheory.thy (~/chris/trunk /tex/talks/2018-AITP/DEMO/) <

©322|context (*Axioms Set V; Scott 1977.%*)

323assumes

324| S1: "E(dom x) — E x* and

325 s2 (cod y) — E y" and g
326| S3: "E(x-y) « dom x =~ cod y" and §
327| s4: "x:(y-z) = (xvy)-z" and %
328 s5: x" and 8
1329| s6: y" S
©330[begin (*Axioms Set VI (Freyd and Scedrov, corrected & simplified) is implied.*) 7
5331 lemma AlFromV: "E(x:y) < dom x ~ cod y" =
| 332} using S3 by blast 3
©333| lemma A2aFromV: "cod(dom x) = dom x" ¥~
1334 by (metis S1 52 S3 S5) 2
$335| lemma A2bFromv: "dom(cod y) 2 cod y" &
1336 using S1 S2 S3 S6 by metis E
$337| lemma A3aFromv: "x-(dom x) = x" g
|33 using S5 by blast F
5339 lemma A3bFromV: "(cod y)-y

| 340 using S6 by blast

©341 lemma AdaFromv: “dom(xy) = dom((dom x):y)"

1342 by (metis S1 S3 S4 S5 56)

5343 lemma AdbFromV: "cod(x-y) = cod(x-(cod y))"

| 344 sledgehammerfl(S1 S2 S3 S4 S5 $6)

$345| lemma ASFromv: "x-(y-z) = (xy)-z"

¥ Proof state v/ Auto update | Update  Search ~ 100% ¢

Sledgehammering
Proof found...

“cvea": Try this: by (smt S2 S3 S4 S6) (282 ms)

"z3": Try this: by (metis (full_types) S2 S3 S4 S5 S6) (2.3 s)

B v Output Query Sledgehammer Symbols

344,17 (13600/30428) (isabelle,isabelle,UTF~8-Isabell uG 1 error(s)6:02 PM
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Some Reflections

> Demain-expert{Bana) — tootexpert{mysely — proof assistant (Isabelle) ?
> Automation granularity much better than expected

> Only initially ATPs found proofs which Isabelle could not verify

> intermediate lemmata
> switched from Z3 to CVC4

> etc. -
JE8 [

De®E:S e X @:c & & @ + -
ticC: thy ITP/DEMO/) <
& 6o]context (+Axioms Set 1)
61[assumes
E(xy) = (E x A E y)" and -
"E(xy) «~ (EX AEyYy A(32z. 22 =2z AXxz2=XxAzy=y))" and
x.(y2) % (xy)z" and
'Vy.3i. ID i A iy 3
6| "Wx.3j. ID j A xj
& 67|begin
5 68| tomna True (Consistency: Witpick finds a model®)
[ 69| mitpick [satisfy,user_axions,show_all,format = 2,expect = genuine] oops
76| lewna assumes “3x. —(E X)* shows True ("Nitpick still finds a models)
I 7 nitpick [satisfy,user_axioms,show_all,format = 2,expect = genuine] oops
5 72| temna assumes *(3x. —(E x)) A (Gx. (E )" shows True (Nitpick still finds a model*)
[175] " nitpick [satisty,user_axioms,show all,format = 2,expect = genutne] oops
7
© 75| lemma E;Implied: "E(xy) — (E x AEy A (3z. 22 = z A xZ = x Azy = y))"
[ 76| by (metis Ay
7
78| declare [ smt_solver = 231
© 79 lemma UCitest: "Vy.3i. ID i A iy =y A (Vj.(ID j A jy =y) = i=j)"
[ 80| by (smt A€, 50 oops (“Uniqueness of left-identity=)
81| doctare I snt_solver = cved 11
& 82| lemma UC:: 3i. I i Ady =y AVI(ID § A jy =y) = i=j)"
[ 83| by (smt A0 (“Uniqueness of left-identity)
“ Proofstate v Autoupdate  Update  Search v 100% o
theorem
UCi: Vx.  (Vra. = (k. 53 - x = x o E (xa - 1)) A
(e xa = x e € G xa)) A
s
(Vab. xa = xb o

8 v Output Query

83,20 (3510/30522)
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(((Vx. xb - x = x — E (xb - x)) A

Sledgehammer  Symbols

(isabelle, isabelle,UTF-8-Isabelle)

BSMB 1 error(s)6:26 PM
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Some Reflections

> Demainexpert{Dana; — tootexpert{mysety — proof assistant (Isabelle) ?

» Automation granularity much better than expected

v

Only initially ATPs found proofs which Isabelle could not verify

v

Due to use of “smt”-tactic our document is not (yet) in AFP
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Some Reflections

> Demainexpert{Dana; — tootexpert{mysety — proof assistant (Isabelle) ?

» Automation granularity much better than expected

v

Only initially ATPs found proofs which Isabelle could not verify

v

Due to use of “smt”-tactic our document is not (yet) in AFP
> Removing certain axioms from proof attempts often useful (associativity)
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Some Reflections

> Demainexpert{Dana; — tootexpert{mysety — proof assistant (Isabelle) ?
» Automation granularity much better than expected

v

Only initially ATPs found proofs which Isabelle could not verify

v

Due to use of “smt”-tactic our document is not (yet) in AFP

> Removing certain axioms from proof attempts often useful (associativity)
Issues in Sledgehammer

» Z3 may give false feedback: “The generated problem is unprovable”
> Z3ran into errors: “A prover error occurred ... (line 82 of General/basics.ML)”
» SPASS ran into errors: “An internal error occurred”

v
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Some Reflections

> Demainexpert{Dana; — tootexpert{mysety — proof assistant (Isabelle) ?
» Automation granularity much better than expected

v

Only initially ATPs found proofs which Isabelle could not verify

v

Due to use of “smt”-tactic our document is not (yet) in AFP

> Removing certain axioms from proof attempts often useful (associativity)
Issues in Sledgehammer

» Z3 may give false feedback: “The generated problem is unprovable”
> Z3ran into errors: “A prover error occurred ... (line 82 of General/basics.ML)”
» SPASS ran into errors: “An internal error occurred”

v

v

CVC4 seems to perform best in this application domain
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Some Reflections

> Demainexpert{Dana; — tootexpert{mysety — proof assistant (Isabelle) ?

» Automation granularity much better than expected

v

Only initially ATPs found proofs which Isabelle could not verify

v

Due to use of “smt”-tactic our document is not (yet) in AFP

> Removing certain axioms from proof attempts often useful (associativity)
Issues in Sledgehammer

» Z3 may give false feedback: “The generated problem is unprovable”
> Z3ran into errors: “A prover error occurred ... (line 82 of General/basics.ML)”
» SPASS ran into errors: “An internal error occurred”

v

v

CVC4 seems to perform best in this application domain

v

Overall: strengths of ATPs surprisingly complementary; they all contributed
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Some Reflections

> Demainexpert{Dana; — tootexpert{mysety — proof assistant (Isabelle) ?

» Automation granularity much better than expected
> Only initially ATPs found proofs which Isabelle could not verify
> Due to use of “smt”-tactic our document is not (yet) in AFP

> Removing certain axioms from proof attempts often useful (associativity)
> Issues in Sledgehammer

» Z3 may give false feedback: “The generated problem is unprovable”
> Z3ran into errors: “A prover error occurred ... (line 82 of General/basics.ML)”
» SPASS ran into errors: “An internal error occurred”

» CVC4 seems to perform best in this application domain
> Overall: strengths of ATPs surprisingly complementary; they all contributed
> Most valuable tool: Nitpick (but results should be better presented)
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Some Reflections

> Demainexpert{Dana; — tootexpert{mysety — proof assistant (Isabelle) ?

» Automation granularity much better than expected
> Only initially ATPs found proofs which Isabelle could not verify
> Due to use of “smt”-tactic our document is not (yet) in AFP

> Removing certain axioms from proof attempts often useful (associativity)
> Issues in Sledgehammer

» Z3 may give false feedback: “The generated problem is unprovable”
> Z3ran into errors: “A prover error occurred ... (line 82 of General/basics.ML)”
» SPASS ran into errors: “An internal error occurred”

» CVC4 seems to perform best in this application domain

> Overall: strengths of ATPs surprisingly complementary; they all contributed
> Most valuable tool: Nitpick (but results should be better presented)

> Very useful: flexible support in GUI of Isabelle
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Some Reflections

o

D@eEd@E: & 9 @ DA @& C00E @ @ #
1 AxiomaticCategoryTheory.thy (~/chris/trunk/tex/talks /2018-AITP/DEMO/) <
12| abbreviation fNot ("—") (*Free negation¥*)
L 13 where "—p = —p"
14| abbreviation fImplies (infixr "—" 13) (*Free implication*)
L 15 where "o — ¢ = @ — P
16| abbreviation fIdentity (infixr "=" 13) (*Free identity*)
Lo17 where "L = r = 1 = r"
18| abbreviation fForall ("V") (*Free universal quantification*)
L 19 where "V& = Vx. E x — & x"
20| abbreviation fForallBinder (binder "V" [8] 9) (*Binder notation¥*)
L 21 where "Vx. ¢ x = Vp"
22|
23| abbreviation fOr (infixr "V" 11)
L 24 where "o V ¢ = (=p) — "
25| abbreviation fAnd (infixr "A" 12)
. 26 where "o A i = —(—p V —)"
27| abbreviation fImplied (infixr "«" 13)
. 28 where "p — ¢ = ¢ — "
29| abbreviation fEquiv (infixr "<—" 15)
. 30 where "p — ¢ = (p — ) A (p — @)
31| abbreviation fExists ("3")
| 32 where "3 = =(V(Ay. —(® y)))"
33| abbreviation fExistsBinder (binder "3" [819)
L 34 where "3x. ¢ x = Jp"
b VS Arrow Control Control Block Digit Document Greek Icon >
(3x.0) (vx.0) N 3 v — — -
v — o~ —0— ~
B ~ Output Query Sledgehammer Symbols
68,1 (2613/30824) (isabelle,isabelle,UTF-8-Isabelle) UG MB 1 error(s)4:05 PM
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Some Reflections

> Demainexpert{Dana; — tootexpert{mysety — proof assistant (Isabelle) ?

» Automation granularity much better than expected
> Only initially ATPs found proofs which Isabelle could not verify
> Due to use of “smt”-tactic our document is not (yet) in AFP

> Removing certain axioms from proof attempts often useful (associativity)
> Issues in Sledgehammer

» Z3 may give false feedback: “The generated problem is unprovable”
> Z3ran into errors: “A prover error occurred ... (line 82 of General/basics.ML)”
» SPASS ran into errors: “An internal error occurred”

» CVC4 seems to perform best in this application domain

> Overall: strengths of ATPs surprisingly complementary; they all contributed
> Most valuable tool: Nitpick (but results should be better presented)

> Very useful: flexible support in GUI of Isabelle

> Very useful: Production of latex documents out of Isabelle
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Some Reflections

> Demainexpert{Dana; — tootexpert{mysety — proof assistant (Isabelle) ?

» Automation granularity much better than expected
> Only initially ATPs found proofs which Isabelle could not verify
> Due to use of “smt”-tactic our document is not (yet) in AFP

> Removing certain axioms from proof attempts often useful (associativity)
> Issues in Sledgehammer

» Z3 may give false feedback: “The generated problem is unprovable”
> Z3ran into errors: “A prover error occurred ... (line 82 of General/basics.ML)”
» SPASS ran into errors: “An internal error occurred”

» CVC4 seems to perform best in this application domain

> Overall: strengths of ATPs surprisingly complementary; they all contributed
> Most valuable tool: Nitpick (but results should be better presented)

> Very useful: flexible support in GUI of Isabelle

> Very useful: Production of latex documents out of Isabelle

> Further remark: No definitional hierarchy used in our experiments
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Some Reflections

> Demainexpert{Dana; — tootexpert{mysety — proof assistant (Isabelle) ?
» Automation granularity much better than expected

> Only initially ATPs found proofs which Isabelle could not verify

> Due to use of “smt”-tactic our document is not (yet) in AFP

> Removing certain axioms from proof attempts often useful (associativity)
> Issues in Sledgehammer

» Z3 may give false feedback: “The generated problem is unprovable”
> Z3ran into errors: “A prover error occurred ... (line 82 of General/basics.ML)”
» SPASS ran into errors: “An internal error occurred”

» CVC4 seems to perform best in this application domain

> Overall: strengths of ATPs surprisingly complementary; they all contributed
> Most valuable tool: Nitpick (but results should be better presented)

> Very useful: flexible support in GUI of Isabelle

> Very useful: Production of latex documents out of Isabelle

> Further remark: No definitional hierarchy used in our experiments

> Proof assistant (in combination with ATPs and Nitpick) strongly fostered the
intuitive exploration of the domain instead of behindering it
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Conclusion
Interesting and useful exploration study in Category Theory
First implementation and automation of Free Logic

HOL utilised as (quite) Universal Metalogic (via SSE approach):
> Lean and elegant approach to integrate and combine heterogeneous logics
> Reuse of existing ITP/ATPs, high degree of automation
> Uniform proofs (modulo the embeddings)
> Intuitive user interaction at abstract level
» Approach very well suited for (interdisciplinary) teaching of logics

Lots of further work

> Philosophy, Maths, CS, Al, NLP, ...
> Rational Argumentation
> Legal- and Ethical-Reasoning in Intelligent Machines

C. Benzmiiller & D. Scott, 2018



lemma InconsistencyInteractive: assumes NEx: "dx. =(E x)" shows False
proof -
(* Let "a" be an undefined object. *)
obtain a where 1; "-(E a)" using assms by auto
(* We instantiate axiom "A3a" with "a". *)
have 2: "(Da)a £ a" usiﬁa_;3a by blast
(* By unfolding the definition of "=" we get from 1 that "(0a)-a" is not defined. This is
easy to see, since if "(Ca)-a" were defined, we also had that "a" is defined, which is
not the case by assumption. *)
have 3: "=(E((Da)-a))" using 1 2 by metis
(* We instantiate axiom "Al" with "Oa" and "a". *)
have 4: "E((0a)-a) ¢ (0a)d & Oa" using Al by blast
(* We instantiate axiom "A2a" with "a". *)
have 5: "(0a)0 = Oa" usiEA2a by blast
(* From 4 and 5 we obtain "(E((Ca)-a))" by propositional Tlogic. *)
have 6: "E((Ca)-a)" using 4 5 by blast
(* We have "=(E((Da)-a))" and "E((Da)-a)", hence Falsity. *)
then show ?thesis using 6 3 by blast
ged
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lemma InconsistencyInteractive: assumes NEx: "dx. =(E x)" shows False
proof -

(* Let "a" be an undefined object. *)

obtain a where 1; "-(E a)" using assms by auto

(* We instantiate axiom "A3a" with "a". *)

have 2: "(Da).a £ a" using_ABa by blast

(* By unfolding the definition of "=" we get from 1 that "(Da)-a" is not defined. This is
easy to see, since if "(Ca)-a" were defined, we also had that "a" is defined, which is
not the case by assumption. *)

have 3: "=(E((Da)-a))" using 1 2 by metis

(* We instantiate axiom "Al" with "Oa" and "a". *)

have 4: "E((Ca)-a) « (Da)_D 2 03" using Al el

(* We instantiate axiom "A2a" with 'a". x) [ @ssumes

. m m - — Al: "E(x-y) <« (xO = Oy)" and
have 5: "(0a)0 = Oa u..ung A2a by blast A2a: "((Dx)0) = Ox" and

(* From 4 and 5 we obtain "(E((Ta)-a))" by prl a2b: "o(x0) = Ox" and

have 6: "E((Ca)-a)" using 4 5 by blast A3a: "(Ox)-x = x" and

(* We have "-~(E((Ca).a))" and "E((Ca).a)", h A3b: "x-(x0) = x" and

then show ?thesis using 6 3 by blast Ada: e gy and

o Adb: "(xy)O = ((xO).y)O" and

q A5: "x-(y-z) £ (x-y)-z"

begin B
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lemma InconsistencyInteractiveVII:
assumes NEx: "3Ix. =(E x)" shows False
proof -
(* Let "a" be an undefined object. *)
obtain a where 1: "= (E a)" using NEx by auto
(* We instantiate axiom "A3a" with "a". *)
have 2: "a-(dom a) = a" uag A3a by blast
(* By unfolding the definition of "=" we get from 1 that "a-(dom a)" is
not defined. This is easy to see, since if "a-(dom a)" were defined, we also
had that "a" is defined, which is not the caseWassumption. *)
have 3: "=(E(a-(dom a)))" using 1 2 by metis
(* We instantiate axiom "Al" with "a" and "dom a". *)
have 4: "E(a-(dom a)) « dom a = cod(dom a)"_using Al by blast
(* We instantiate axiom "A2a" with "a". *)
have 5: "cod(dom a) = dom a" using A2a by blast
(* We use 5 (and symmetry and transitivity of "=") to rewrite the
right-hand of the equivalence 4 into "dom a dom a". *)
have 6: "E(a-(dom a)) « dom a = dom a" usi_ng 4 SWauto
(* By reflexivity of "=" we get that "a-(dom a)" must be defined. *)
have 7: "E(a-(dom a))" using 6 by blast _
(* We have shown in 7 that "a-(dom a)" is defined, and in 3 that it is undefined.
Contradiction. *) -
then show ?thesis using 7 3 by blast
qed
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lemma InconsistencyInteractiveVII:
assumes NEx: "Ix. =(E x)" shows False
proof -
(* Let "a" be an undefined object. *)
obtain a where 1: "=(E a)" using NEx by auto
(* We instantiate axiom "A3a" with "a". *)
have 2: "a.(dom a) = a" uag A3a by blast
(* By unfolding the definition of "=" we get from 1 that "a-(dom a)" is
not defined. This is easy to see, since if "a-(dom a)" were_defined, we also
had that "a" is defined, which is not the caseWassumption. *)
have 3: "= (E(a-(dom a)))" using 1 2 by metis
(* We instantiate axiom "Al" with "a" and "dom a". *)
have 4: "E(a-(dom a)) « dom a = cod(dom a)"_using Al by blast
(* We instantiate axiom "A2a" with "a". *)

have 5: "cod(dom a) = dom a" using A2a
(* We use 5 (and symmetry and transitivif |assumes

right-hand of the equivalence 4 into Al: "E(x:y) & dom x = cod y" and
have 6: "E(a-(dom a)) « dom a = dom a" | A2a: "cod(dom x) dom x " and
(* By reflexivity of "=" we get that "a-J| A2b: "dom(cod y) = cod y" and
have 7: "E(a-(dom a))" using 6 by blast A3a: "x-(dom x) & x" and
(* We have shown in 7 that "a-(dﬂ a)" i9| A3b: "(cod y)y & y" and

1111k

Contradiction. *) Ada: "dom(x-y) = dom((dom x)-y)" and
then show ?thesis using 7 3 by blast Adb: "cod(xy) 2 cod(x-(cod y))" and
qed A5: "x-(y-z) & (xy)z"
begin
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