
ATP-guidence for Learning Premise Selection

Bartosz Piotrowski, Josef Urban

29 III 2018
Aussois



Premise Selection

I Suppose we have:
I a conjecture T we want to prove with Automated Theorem

Prover (ATP),
I a set of premises P (axioms, definitions, other theorems) we

can use to prove T .

I If P is big, giving it all as axioms to the ATP for proving T is
very likely to swamp the prover.

I So the task is to choose a reasonably small subset P ′ ⊆ P
such that still P ′ |= T .

In large formal libraries there is a lot of premises available.
Therefore the task of Premise Selection is crucial to make proving
with ATPs succesful in these libraries.



Mizar Mathematical Library

I A vast collection of mathematical theorems and its proofs
formalized and verified in the Mizar system.

I In the current version of MML there is > 57000 theorems and
lemmas organized into 1305 articles.

I The library begins with the article from 1989 which contains
axioms of Tarski-Grothendieck set theory. In subsequent
articles we find theorems from various classical areas of
mathematics, for example:
I Borsuk–Ulam theorem,
I Jordan Curve theorem,
I Brouwer Fixed Point theorem,
I Hahn-Banach theorem,
I Ramsey’s theorem,
I Gödel’s Completeness theorem,
I Schröder-Bernstein theorem,
I ...



Mizar Mathematical Library – examples

theorem :: IRRAT_1:2

ex x, y being real number st

(x is irrational & y is irrational & x ^ y is rational)

theorem :: CARD_5:31

for a, b being Aleph st a c= b holds

exp(a,b) = exp(2,b)

theorem :: TOPS_3:27

for X being non empty TopSpace

for A being Subset of X holds

(A is nowhere_dense iff ex C being Subset of X st

(A c= C & C is closed & C is boundary))

In HTMLised MML: IRRAT 1:2, CARD 5:31, TOPS 3:27.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/irrat_1
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/card_5.html#T31
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/tops_3.html#T27


Some time ago Josef created the MPTP system for exporting
statements of Mizar theorems, lemmas and definitions to the
first-order TPTP language (which is standard for current first-order
Automated Theorem Provers).



Mizar Mathematical Library in TPTP

Before:

theorem :: CARD_5:31

for a, b being Aleph st a c= b holds

exp(a,b) = exp(2,b)

After:

fof(t31_card_5, conjecture,

(![A]: ((~(v1_finset_1(A)) & v1_card_1(A)) =>

(![B]: ((~(v1_finset_1(B)) & v1_card_1(B)) =>

(r1_ordinal1(A,B) => k3_card_2(A,B) = k3_card_2(2,B))))))).



Mizar Mathematical Library in TPTP

I In the corpus there is 57917 theorems, which along with
definitions, axioms, typing statements and schema
instantiations give 146700 premises.

I Currently, out of these 57917 theorems roughly 33000 can be
proved automatically (with reasonably modest computational
resources) having provided an adequate subset of premises as
axioms and an appropriate set of parameters governing a
strategy of a given ATP.

I In our experiments with Premise Selection we limit ourselves
to these 33000 ATP-provable theorems.



Machine Learning for Premise Selection

Currently, most efficient methods for Premise Selection are based
on data-driven/machine-learning approaches, where the notion of
useful premise is learned from the known proofs.
The procedure is the following:

1. On a basis of a set of theorems with its proofs we create a set
of training examples which is meant to sufficiently illustrate
the notion of a useful premise,

2. We train a machine learning model on the prepared examples.

3. We create rankings of relevat premises for a separate test set
of theorems, according to the model.

4. Finally, we evaluate the performance of the model by trying to
prove the test theorems with ATP using premises from several
top slices of the created rankings.







There are several specific peculiarities of applying Machine
Learning to Premise Selection, which makes this problem
interesting and challenging.



How to represent mathematical formulae?

ML methods typically need good feature representation of objects
they operate on; it is highly non obvious how to characterize
mathematical formulas that the representation is simple enough to
be appropriate for ML algorithm but also meaningful enough.
Possible approaches are:

I syntactic features,

I model-based features,

I deep neural embeddings,

I ...



An example of a feature representation

Theorem CARD 5:31 in TPTP format:

fof(t31_card_5, conjecture,

(![A]: ((~(v1_finset_1(A)) & v1_card_1(A)) =>

(![B]: ((~(v1_finset_1(B)) & v1_card_1(B)) =>

(r1_ordinal1(A,B) => k3_card_2(A,B) = k3_card_2(2,B))))))).

... and its feature description:

"=", "2", "v1_card_1", "r1_ordinal1",

"v1_finset_1", "k3_card_2",

"=(k3_card_2(V,V), k3_card_2(2,V))", "=(V,V)",

"v1_card_1(V)", "v1_finset_1(V)", "r1_ordinal1(V,V)",

"k3_card_2(2,V)", "k3_card_2(V,V)",

"v1_card_1-V", "r1_ordinal1-V", "v1_finset_1-V",

"=-k3_card_2", "k3_card_2-V", "k3_card_2-2",



An example of feature representation

Such a set of features ...

"=", "2", "v1_card_1", "r1_ordinal1",

"v1_finset_1", "k3_card_2",

"=(k3_card_2(V,V), k3_card_2(2,V))", "=(V,V)",

"v1_card_1(V)", "v1_finset_1(V)", "r1_ordinal1(V,V)",

"k3_card_2(2,V)", "k3_card_2(V,V)",

"v1_card_1-V", "r1_ordinal1-V", "v1_finset_1-V",

"=-k3_card_2", "k3_card_2-V", "k3_card_2-2",

... is represented as a long, sparse binary vector:

(0, 1, 1, 0, 0, 0, 1, ..., 0, 0, 1, 0, 0)

Because featuresing the whole MML produces 451706 different
features, length of such vector is 451706.



Which type of Machine Learning models?

There are two possible settings in which we can approach premise
selection with Machine Learning:

1. Multilabel setting: here we treat premises used in the proofs
as opaque labels on theorems and we train a model capable of
labeling conjectures based on their features. Example:

[(0, 1, 0, 0, ..., 0), (prm_1, prm_2, prm_4)]

2. Binary setting: here the aim of the learning model is to
recognize pairwise-relevance of the conjecture-premise pairs,
i.e. to decide what is the chance of the premise being relevant
for proving the conjecture based on the features of both the
conjecture and the premise. Example:

[(0, 1, 0, 0, ..., 0), (1, 0, 0, 0, ..., 1), 0]



I Most of the work on premise selection was done in multilabel
setting with use of fast and simple ML algorithms like k-NN
and Naive Bayes.

I In 2016/17, Google Research team led by Christian Szegedy
applied deep neural networks in the binary setting and
improved state-of-the-art in the field. In deep learning
approach neural net learns feature representation on its own.

I Our goal was to do premise selection in binary setting with
some ML algorithm which is easier to train, with handcrafted
features.

I We have chosen XGBoost as ML algorithm to use, because it
proved be efficient in many ML competitions, it is fast, and
performs well with sparse features.



How to create a good training set?

I Theorems have many proofs with various sets of premises used
in them. It would be very difficult to generate all ATP-feasible
proofs for some set of theorems.

I Different proofs have different difficulty for the given ATP.

I Different provers find different proofs.

It means it is tricky to prepare an appropriate training set, because
our environment is to some extent unknown.
This is especially significant if we need to have also negative
examples in the training set: if the theorem T can be proved with
premises {a, b} and {a, c} but we, not being aware of the latter
proof, present c as a negative example, we can distort the process
of learning the notion of useful premise.



How to evaluate performance of the learned model?

I Doing evaluation we cannot fully relay on the already known
proofs of the theorems from the test set, because the Machine
Learning model often can surprise us with proposing such
premises that they result in a new, so far unknown proof – so
ATP-evaluation is much more meaningful.

I New proofs found ATP-evaluation can be useful for
subsequent round of training.

I It is beneficial to do ATP-minimization of proofs.

I Because ATPs have many powerful heuristics, it is good to
intentionally limit their capabilities when comparing different
Premise Selection methods, in order to isolate effects of these
methods. We use E prover with auto mode and we put at
most 512 premises as axioms for proving.



To tune parameters of XGBoost model, training/test split was
fixed and each trained model was evaluated with ATP:



Observations from previous slides suggest to introduce a setup of
experiments in which there is an interaction between a given ATP
and a Machine Learning algorithm.
In the spirit of these remarks we started loop-style experiments
where we intersperse training and ATP-evaluation, applying
ATP-negative mining to create a training set.







Prove-and-learn loop on train/test split

Require: theorems_train, proofs_train, theorems_test, premises

train_set = prepare_train_set(proofs_train)

while(more proofs for training theorems found)

{

model = train(train_set)

rankings_test = rankings(model, theorems_test, premises)

proofs_test = atp_eval(rankings_test)

rankings_train = rankings(model, theorems_train, premises)

proofs_train = atp_eval(rankings_train)

train_set = negative_mining(rankings_train, proofs_train)

}





Prove-and-learn loop from zero

Require: theorems, premises

rankings = random_rankings(theorems)

proofs = atp_eval(rankings)

train_set = prepare_train_set(proofs)

while(more proofs found)

{

model = train(train_set)

rankings = rankings(model, theorems, premises)

proofs = atp_eval(rankings)

train_set = negative_mining(rankings, proofs)

}









Implementation:
https://github.com/BartoszPiotrowski/ATPboost

https://github.com/BartoszPiotrowski/ATPboost


Future work: explore ATP-negative mining with deep neural nets.



Thank you!


