
1/21

Measuring progress to predict success:
Can a good proof strategy be evolved?

Giles Reger1, Martin Suda2

1School of Computer Science, University of Manchester, UK
2TU Wien, Vienna, Austria

AITP 2017 – Obergurgl, March 29, 2017



1/21

Vampire advertising

Vampire
a “reasonably well-performing” first-order ATP
unfortunately not open source
known to be notoriously hard to obtain

Things are actually not so dark:
email me, I can send you an executable
find one at https://www.starexec.org/
(don’t) look for the source at:
http://www.cs.miami.edu/~tptp/CASC/J8/Entrants.html

https://www.starexec.org/
http://www.cs.miami.edu/~tptp/CASC/J8/Entrants.html


1/21

Vampire advertising

Vampire
a “reasonably well-performing” first-order ATP
unfortunately not open source
known to be notoriously hard to obtain

Things are actually not so dark:
email me, I can send you an executable
find one at https://www.starexec.org/
(don’t) look for the source at:
http://www.cs.miami.edu/~tptp/CASC/J8/Entrants.html

https://www.starexec.org/
http://www.cs.miami.edu/~tptp/CASC/J8/Entrants.html


2/21

Outline

1 The role of strategies in modern ATPs

2 Proving with orderings

3 How to evolve a precedence?

4 Conclusion



3/21

The role of strategies in modern ATPs

Strategy:
there are many-many options to setup the proving process
a strategy is a concrete way to do this setup

From the ATP lore
If a strategy solves a problem then it typically solves it within a
short amount of time (say, 5 seconds).

What does this mean?
There is no single best strategy
It’s usually better to start something else than to wait
Strategy Scheduling (portfolio approach)



3/21

The role of strategies in modern ATPs

Strategy:
there are many-many options to setup the proving process
a strategy is a concrete way to do this setup

From the ATP lore
If a strategy solves a problem then it typically solves it within a
short amount of time (say, 5 seconds).

What does this mean?
There is no single best strategy
It’s usually better to start something else than to wait
Strategy Scheduling (portfolio approach)



3/21

The role of strategies in modern ATPs

Strategy:
there are many-many options to setup the proving process
a strategy is a concrete way to do this setup

From the ATP lore
If a strategy solves a problem then it typically solves it within a
short amount of time (say, 5 seconds).

What does this mean?
There is no single best strategy
It’s usually better to start something else than to wait
Strategy Scheduling (portfolio approach)



4/21

CASC-mode: a conditional schedule of strategies

case Property::FNE:
if (atoms > 2000) {

quick.push("dis+1011_40_bs=on:cond=on:gs=on:gsaa=from_current:nwc=1:sfr=on:ssfp=1000:ssfq=2.0:smm=sco:ssnc=none:updr=off_282");
quick.push("lrs+1011_3_nwc=1:stl=90:sos=on:spl=off:sp=reverse_arity_133");
quick.push("dis-10_5_cond=fast:gsp=input_only:gs=on:gsem=off:nwc=1:sas=minisat:sos=all:spl=off:sp=occurrence_190");
quick.push("lrs+1011_5_cond=fast:gs=on:nwc=2.5:stl=30:sd=3:ss=axioms:sdd=off:sfr=on:ssfp=100000:ssfq=1.0:smm=sco:ssnc=none:sp=occurrence_278");
quick.push("lrs-3_5:4_bs=on:bsr=on:cond=on:fsr=off:gsp=input_only:gs=on:gsaa=from_current:gsem=on:lcm=predicate:nwc=1.1:nicw=on:sas=minisat:stl=60:sd=3:ss=axioms:sac=on:ssac=none:sfr=on:ssfp=1000:ssfq=1.0:ssnc=all:sp=reverse_arity:urr=ec_only:updr=off_480");

}
else if (atoms > 1200) {

quick.push("lrs+1011_5_cond=fast:gs=on:nwc=2.5:stl=30:sd=3:ss=axioms:sdd=off:sfr=on:ssfp=100000:ssfq=1.0:smm=sco:ssnc=none:sp=occurrence_2");
quick.push("dis+1011_8_bsr=unit_only:cond=fast:fsr=off:gs=on:gsaa=full_model:nm=0:nwc=1:sas=minisat:sos=all:sfr=on:ssfp=4000:ssfq=1.1:smm=off:sp=reverse_arity_859");
quick.push("dis+11_7_gs=on:gsaa=full_model:lcm=predicate:nwc=1.1:sas=minisat:ssac=none:ssfp=1000:ssfq=1.0:smm=sco:sp=reverse_arity:urr=ec_only_878");
quick.push("ins+11_5_br=off:gs=on:gsem=off:igbrr=0.9:igrr=1/64:igrp=1400:igrpq=1.1:igs=1003:igwr=on:lcm=reverse:nwc=1:spl=off:urr=on:updr=off_1192");

}
else {

quick.push("dis+11_7_16");
quick.push("dis+1011_5:4_gs=on:gsssp=full:nwc=1.5:sas=minisat:ssac=none:sdd=off:sfr=on:ssfp=40000:ssfq=1.4:smm=sco:ssnc=all:sp=reverse_arity:updr=off_2");
quick.push("dis+1011_40_bs=on:cond=on:gs=on:gsaa=from_current:nwc=1:sfr=on:ssfp=1000:ssfq=2.0:smm=sco:ssnc=none:updr=off_14");
...



5/21

Results for FOF division of CASC 20161

1www.cs.miami.edu/~tptp/CASC/J8/WWWFiles/ResultsPlots.html

www.cs.miami.edu/~tptp/CASC/J8/WWWFiles/ResultsPlots.html


6/21

Outline

1 The role of strategies in modern ATPs

2 Proving with orderings

3 How to evolve a precedence?

4 Conclusion



7/21

The Saturation Loop

Saturate a set of clauses with respect to an inference system

Active b Passive

U
n
p
ro
ce
ss
ed

Initially: the input clauses start in passive, active is empty
Given clause: selected from passive as the next to be processed
Move the give clause from active to passive and perform all
inferences between clauses in active and the given clause



8/21

The superposition calculus (�)

Resolution Factoring

A ∨ C1 ¬A′ ∨ C2

(C1 ∨ C2)θ
, A ∨ A′ ∨ C

(A ∨ C)θ
,

where, for both inferences, θ = mgu(A,A′) and A is not an equality literal,
and A and ¬A′ are (strictly) maximal in their respective clauses

Superposition
l ' r ∨ C1 L[s]p ∨ C2

(L[r ]p ∨ C1 ∨ C2)θ
or

l ' r ∨ C1 t[s]p ⊗ t′ ∨ C2

(t[r ]p ⊗ t′ ∨ C1 ∨ C2)θ
,

where θ = mgu(l , s) and rθ 6� lθ and, for the left rule L[s] is not an equality
literal, and for the right rule ⊗ stands either for ' or 6' and t′θ 6� t[s]θ

EqualityResolution EqualityFactoring
s 6' t ∨ C

Cθ
, s ' t ∨ s ′ ' t′ ∨ C

(t 6' t′ ∨ s ′ ' t′ ∨ C)θ
,

where θ = mgu(s, t) where θ = mgu(s, s ′), tθ 6� sθ, and t′θ 6� s ′θ



9/21

How important could an ordering be?

Consider proving a formula

ψ =
∧

i=1,...,n

(ai ∨ bi )→
∧

i=1,...,n

(ai ∨ bi )

a naive clausification of ¬ψ has 2n + n clauses!
goes down to 3n + 1 with Tseitin encoding:

(ai ∨ bi ), (¬mi ∨ ¬ai ), (¬mi ∨ ¬bi ), (m1 ∨ . . . ∨mn),

where mi is a name for ¬ai ∧ ¬bi

Question:
What will superposition derive under an ordering where

mi�aj and mi�bj for every i and j?



9/21

How important could an ordering be?

Consider proving a formula

ψ =
∧

i=1,...,n

(ai ∨ bi )→
∧

i=1,...,n

(ai ∨ bi )

a naive clausification of ¬ψ has 2n + n clauses!

goes down to 3n + 1 with Tseitin encoding:

(ai ∨ bi ), (¬mi ∨ ¬ai ), (¬mi ∨ ¬bi ), (m1 ∨ . . . ∨mn),

where mi is a name for ¬ai ∧ ¬bi

Question:
What will superposition derive under an ordering where

mi�aj and mi�bj for every i and j?



9/21

How important could an ordering be?

Consider proving a formula

ψ =
∧

i=1,...,n

(ai ∨ bi )→
∧

i=1,...,n

(ai ∨ bi )

a naive clausification of ¬ψ has 2n + n clauses!
goes down to 3n + 1 with Tseitin encoding:

(ai ∨ bi ), (¬mi ∨ ¬ai ), (¬mi ∨ ¬bi ), (m1 ∨ . . . ∨mn),

where mi is a name for ¬ai ∧ ¬bi

Question:
What will superposition derive under an ordering where

mi�aj and mi�bj for every i and j?



9/21

How important could an ordering be?

Consider proving a formula

ψ =
∧

i=1,...,n

(ai ∨ bi )→
∧

i=1,...,n

(ai ∨ bi )

a naive clausification of ¬ψ has 2n + n clauses!
goes down to 3n + 1 with Tseitin encoding:

(ai ∨ bi ), (¬mi ∨ ¬ai ), (¬mi ∨ ¬bi ), (m1 ∨ . . . ∨mn),

where mi is a name for ¬ai ∧ ¬bi

Question:
What will superposition derive under an ordering where

mi�aj and mi�bj for every i and j?



10/21

Choosing an ordering

Orderings typically used in ATPs:
Knuth-Bendix Ordering (KBO),
Lexicographic Path Ordering (LPO)

Both determined by a precedence on the problem’s signature:
a linear order on the symbols occurring in the problem

We have n! possibilities for choosing the ordering

ATPs typically provide a few schemes for fixing the precedence

Example
Vampire: arity, reverse arity, occurrence
E: frequency (invfreq), many more



10/21

Choosing an ordering

Orderings typically used in ATPs:
Knuth-Bendix Ordering (KBO),
Lexicographic Path Ordering (LPO)

Both determined by a precedence on the problem’s signature:
a linear order on the symbols occurring in the problem

We have n! possibilities for choosing the ordering

ATPs typically provide a few schemes for fixing the precedence

Example
Vampire: arity, reverse arity, occurrence
E: frequency (invfreq), many more



10/21

Choosing an ordering

Orderings typically used in ATPs:
Knuth-Bendix Ordering (KBO),
Lexicographic Path Ordering (LPO)

Both determined by a precedence on the problem’s signature:
a linear order on the symbols occurring in the problem

We have n! possibilities for choosing the ordering

ATPs typically provide a few schemes for fixing the precedence

Example
Vampire: arity, reverse arity, occurrence
E: frequency (invfreq), many more



11/21

Playing with precedence

Rules of the game
Fix a single theorem proving strategy in Vampire:
-av off -sa discount -awr 10 -lcm predicate

Then by varying only the precedence
try to solve as many TPTP problems as possible

TPTP library, version 6.4.0, contains 17280 first-order problems
9277 solved by “arity” in 300s
9457 solved by “frequency” in 300s (Thank you, Stephan!)
∼12500 solved in 300s by either casc or casc_sat mode



11/21

Playing with precedence

Rules of the game
Fix a single theorem proving strategy in Vampire:
-av off -sa discount -awr 10 -lcm predicate

Then by varying only the precedence
try to solve as many TPTP problems as possible

TPTP library, version 6.4.0, contains 17280 first-order problems

9277 solved by “arity” in 300s
9457 solved by “frequency” in 300s (Thank you, Stephan!)
∼12500 solved in 300s by either casc or casc_sat mode



11/21

Playing with precedence

Rules of the game
Fix a single theorem proving strategy in Vampire:
-av off -sa discount -awr 10 -lcm predicate

Then by varying only the precedence
try to solve as many TPTP problems as possible

TPTP library, version 6.4.0, contains 17280 first-order problems
9277 solved by “arity” in 300s

9457 solved by “frequency” in 300s (Thank you, Stephan!)
∼12500 solved in 300s by either casc or casc_sat mode



11/21

Playing with precedence

Rules of the game
Fix a single theorem proving strategy in Vampire:
-av off -sa discount -awr 10 -lcm predicate

Then by varying only the precedence
try to solve as many TPTP problems as possible

TPTP library, version 6.4.0, contains 17280 first-order problems
9277 solved by “arity” in 300s
9457 solved by “frequency” in 300s (Thank you, Stephan!)

∼12500 solved in 300s by either casc or casc_sat mode



11/21

Playing with precedence

Rules of the game
Fix a single theorem proving strategy in Vampire:
-av off -sa discount -awr 10 -lcm predicate

Then by varying only the precedence
try to solve as many TPTP problems as possible

TPTP library, version 6.4.0, contains 17280 first-order problems
9277 solved by “arity” in 300s
9457 solved by “frequency” in 300s (Thank you, Stephan!)
∼12500 solved in 300s by either casc or casc_sat mode



12/21

How good is a random precedence?

From the previous page:
9277 by “arity” in 300s
9457 by “frequency” in 300s

Shuffle once:
∼7100 solved with a random precedence (3s)
∼8450 solved with a random precedence (60s)
∼9100 solved with a random precedence (300s)

Shuffle a few times:
9387 solved in a union of 9 independent random precedence
60s runs (1678 problems in the grey zone)



12/21

How good is a random precedence?

From the previous page:
9277 by “arity” in 300s
9457 by “frequency” in 300s

Shuffle once:
∼7100 solved with a random precedence (3s)
∼8450 solved with a random precedence (60s)
∼9100 solved with a random precedence (300s)

Shuffle a few times:
9387 solved in a union of 9 independent random precedence
60s runs (1678 problems in the grey zone)



12/21

How good is a random precedence?

From the previous page:
9277 by “arity” in 300s
9457 by “frequency” in 300s

Shuffle once:
∼7100 solved with a random precedence (3s)
∼8450 solved with a random precedence (60s)
∼9100 solved with a random precedence (300s)

Shuffle a few times:
9387 solved in a union of 9 independent random precedence
60s runs (1678 problems in the grey zone)



13/21

Scheduler with Dice and Harmonic numbers

Quesion:
If the only way to vary a strategy would be to randomise the
precedence, how many TPTP problems could I solve given
a time limit of 300s per problem?

The setup:
for i = 1 to 100
run over TPTP with a seed = i and time limit 300.0/i s
17280 · H100 · 300s ≈ 311 days of computation

How many slices could a reasonably good schedule use?
3.0s (7093) 3.0s (330) 3.1s (192) 3.2s (111) 3.3s (101) 4.4s (163) 4.5s (87) 4.8s (79) 5.0s (64) 6.2s
(108) 9.6s (156) 11.1s (104) 11.5s (64) 21.4s (169) 205.3s (736)

Solves 9557 problems (9566 on validation set)



13/21

Scheduler with Dice and Harmonic numbers

Quesion:
If the only way to vary a strategy would be to randomise the
precedence, how many TPTP problems could I solve given
a time limit of 300s per problem?

The setup:
for i = 1 to 100
run over TPTP with a seed = i and time limit 300.0/i s
17280 · H100 · 300s ≈ 311 days of computation

How many slices could a reasonably good schedule use?
3.0s (7093) 3.0s (330) 3.1s (192) 3.2s (111) 3.3s (101) 4.4s (163) 4.5s (87) 4.8s (79) 5.0s (64) 6.2s
(108) 9.6s (156) 11.1s (104) 11.5s (64) 21.4s (169) 205.3s (736)

Solves 9557 problems (9566 on validation set)



13/21

Scheduler with Dice and Harmonic numbers

Quesion:
If the only way to vary a strategy would be to randomise the
precedence, how many TPTP problems could I solve given
a time limit of 300s per problem?

The setup:
for i = 1 to 100
run over TPTP with a seed = i and time limit 300.0/i s
17280 · H100 · 300s ≈ 311 days of computation

How many slices could a reasonably good schedule use?

3.0s (7093) 3.0s (330) 3.1s (192) 3.2s (111) 3.3s (101) 4.4s (163) 4.5s (87) 4.8s (79) 5.0s (64) 6.2s
(108) 9.6s (156) 11.1s (104) 11.5s (64) 21.4s (169) 205.3s (736)

Solves 9557 problems (9566 on validation set)



13/21

Scheduler with Dice and Harmonic numbers

Quesion:
If the only way to vary a strategy would be to randomise the
precedence, how many TPTP problems could I solve given
a time limit of 300s per problem?

The setup:
for i = 1 to 100
run over TPTP with a seed = i and time limit 300.0/i s
17280 · H100 · 300s ≈ 311 days of computation

How many slices could a reasonably good schedule use?
3.0s (7093) 3.0s (330) 3.1s (192) 3.2s (111) 3.3s (101) 4.4s (163) 4.5s (87) 4.8s (79) 5.0s (64) 6.2s
(108) 9.6s (156) 11.1s (104) 11.5s (64) 21.4s (169) 205.3s (736)

Solves 9557 problems (9566 on validation set)



14/21

Outline

1 The role of strategies in modern ATPs

2 Proving with orderings

3 How to evolve a precedence?

4 Conclusion



15/21

The Slowly-Growing-Search-Space heuristic

SGSS in a nutshell:
A strategy that leads to a slowly growing search space will likely be
more successful at finding a proof (in reasonable time) than a
strategy that leads to a rapidly growing one.

Intuition:
Can we find the proof before it chokes?
Since it’s hard to predict if we are getting close . . .
. . . try to postpone the choking until we (hopefully) get there.

Successfully applied in previous work on literal selection [RSV16]



15/21

The Slowly-Growing-Search-Space heuristic

SGSS in a nutshell:
A strategy that leads to a slowly growing search space will likely be
more successful at finding a proof (in reasonable time) than a
strategy that leads to a rapidly growing one.

Intuition:
Can we find the proof before it chokes?
Since it’s hard to predict if we are getting close . . .
. . . try to postpone the choking until we (hopefully) get there.

Successfully applied in previous work on literal selection [RSV16]



15/21

The Slowly-Growing-Search-Space heuristic

SGSS in a nutshell:
A strategy that leads to a slowly growing search space will likely be
more successful at finding a proof (in reasonable time) than a
strategy that leads to a rapidly growing one.

Intuition:
Can we find the proof before it chokes?
Since it’s hard to predict if we are getting close . . .
. . . try to postpone the choking until we (hopefully) get there.

Successfully applied in previous work on literal selection [RSV16]



16/21

Using SGSS to look for a good precedence

Main complication:
Ordering must be fixed during the entire proof attempt

Idea
Look for strategies which minimize the number of derived clauses
after a certain (small) number of iterations of the saturation loop.

Can this work in practice?
Probably not under tight time constraints.
In any case:
Are there actually any good precedences out there?
Possible application:
solve hard previously unsolved problems



16/21

Using SGSS to look for a good precedence

Main complication:
Ordering must be fixed during the entire proof attempt

Idea
Look for strategies which minimize the number of derived clauses
after a certain (small) number of iterations of the saturation loop.

Can this work in practice?
Probably not under tight time constraints.
In any case:
Are there actually any good precedences out there?
Possible application:
solve hard previously unsolved problems



16/21

Using SGSS to look for a good precedence

Main complication:
Ordering must be fixed during the entire proof attempt

Idea
Look for strategies which minimize the number of derived clauses
after a certain (small) number of iterations of the saturation loop.

Can this work in practice?
Probably not under tight time constraints.
In any case:
Are there actually any good precedences out there?
Possible application:
solve hard previously unsolved problems



17/21

A(n a)typical development of the passive set’s size



17/21

A(n a)typical development of the passive set’s size



18/21

Can it possibly work?

Using the 9 independent random-precedence 60 second runs

On the set P of 1678 problems from the “grey zone”

Record size of passive every 100 activations

Compute nine respective sums si until the first stream stops:
S1(p) = s1(p, 0) + s1(p, 100) + s1(p, 200) + . . .
. . .
S9(p) = s9(p, 0) + s9(p, 100) + s1(p, 200) + . . .

Denote the average Si (p) over (un)successful runs i as S̄(un)succ(p)

For how many p ∈ P is S̄succ(p) < S̄unsucc(p)?

Answer: 1130 (out of 1669)



18/21

Can it possibly work?

Using the 9 independent random-precedence 60 second runs

On the set P of 1678 problems from the “grey zone”

Record size of passive every 100 activations

Compute nine respective sums si until the first stream stops:
S1(p) = s1(p, 0) + s1(p, 100) + s1(p, 200) + . . .
. . .
S9(p) = s9(p, 0) + s9(p, 100) + s1(p, 200) + . . .

Denote the average Si (p) over (un)successful runs i as S̄(un)succ(p)

For how many p ∈ P is S̄succ(p) < S̄unsucc(p)?

Answer: 1130 (out of 1669)



19/21

How did we evolve, then?

Optimize_precedence(p, t1, t2)

run “frequency” for 1s to establish act_cnt
spawn a population Π of n random precedences
the fitness of π ∈ Π is Sπ(p):
the sum of the passive set sizes during a run on p
summing every step from 0 to act_cnt activations
loop for t1 seconds:

pick a π ∈ Π
randomly (adaptively) perturb π to obtain π′

evaluate π′ as above
keep the better of π and π′

Finally, run with πbest for t2 seconds



19/21

How did we evolve, then?

Optimize_precedence(p, t1, t2)

run “frequency” for 1s to establish act_cnt
spawn a population Π of n random precedences
the fitness of π ∈ Π is Sπ(p):
the sum of the passive set sizes during a run on p
summing every step from 0 to act_cnt activations
loop for t1 seconds:

pick a π ∈ Π
randomly (adaptively) perturb π to obtain π′

evaluate π′ as above
keep the better of π and π′

Finally, run with πbest for t2 seconds



20/21

Results

First a test run:
optimizing for 300s and final run for 60s: 8965
“control” where the final run is “frequency”: 8888

The “long” run:
1200s optimizing, 300s final run: 9604
solved a rating 1.0 problem: SWV978-1

How many have solved in total?
“frequency” 300s: 9457 (40 uniques)
all the “harmonic” runs: 10030 (202 uniques)
the long optimizing run: 9604 (87 uniques)
In total: 10176



20/21

Results

First a test run:
optimizing for 300s and final run for 60s: 8965
“control” where the final run is “frequency”: 8888

The “long” run:
1200s optimizing, 300s final run: 9604
solved a rating 1.0 problem: SWV978-1

How many have solved in total?
“frequency” 300s: 9457 (40 uniques)
all the “harmonic” runs: 10030 (202 uniques)
the long optimizing run: 9604 (87 uniques)
In total: 10176



20/21

Results

First a test run:
optimizing for 300s and final run for 60s: 8965
“control” where the final run is “frequency”: 8888

The “long” run:
1200s optimizing, 300s final run: 9604
solved a rating 1.0 problem: SWV978-1

How many have solved in total?
“frequency” 300s: 9457 (40 uniques)
all the “harmonic” runs: 10030 (202 uniques)
the long optimizing run: 9604 (87 uniques)
In total: 10176



21/21

Conclusion

Lessons learned:
A good ordering can make a difference
If out of ideas, check out what E does
The slowly-growing-search-space heuristic works!

Future work:
Where else could SGSS be applied?
How to make it more useful in a time-critical setting?

Thank you for your attention!



21/21

Conclusion

Lessons learned:
A good ordering can make a difference
If out of ideas, check out what E does
The slowly-growing-search-space heuristic works!

Future work:
Where else could SGSS be applied?
How to make it more useful in a time-critical setting?

Thank you for your attention!



21/21

Conclusion

Lessons learned:
A good ordering can make a difference
If out of ideas, check out what E does
The slowly-growing-search-space heuristic works!

Future work:
Where else could SGSS be applied?
How to make it more useful in a time-critical setting?

Thank you for your attention!


	The role of strategies in modern ATPs 
	Proving with orderings
	How to evolve a precedence?
	Conclusion

