
Applying Formal Verification to Reflective
Reasoning

R. Kumar1 B. Fallenstein2

1Data61, CSIRO and UNSW
ramana@intelligence.org

2Machine Intelligence Research Institute
benya@intelligence.org

Artificial Intelligence for Theorem Proving, Obergurgl 2017

ramana@intelligence.org
benya@intelligence.org


Who am I?

Ramana Kumar

PhD, University of Cambridge

Researcher, Data61, CSIRO

Theorem Proving in HOL



Context: Beneficial AI

Source: Future of Humanity Institute, Oxford.
See also: https://intelligence.org/why-ai-safety/

https://intelligence.org/why-ai-safety/


Context: Beneficial AI

Technical Agenda

Highly Reliable Agent Design

I Foundations

I Basic problems lacking in-principle solutions

(Note: This is not MIRI’s only research agenda.)



Context: Beneficial AI

Technical Agenda

Highly Reliable Agent Design

I Foundations

I Basic problems lacking in-principle solutions

(Note: This is not MIRI’s only research agenda.)



Context: Beneficial AI

Technical Agenda

Highly Reliable Agent Design

I Foundations

I Basic problems lacking in-principle solutions

(Note: This is not MIRI’s only research agenda.)



Context: Beneficial AI

Technical Agenda

Highly Reliable Agent Design

I Foundations

I Basic problems lacking in-principle solutions

(Note: This is not MIRI’s only research agenda.)



One problem within MIRI’s 2014 agenda happened
to seem to align with my expertise, theorem proving

and self-verification



Problem Statement

Design a system that

I always satisfies some safety property,
I but is otherwise capable of arbitrary

self-improvement.



Problem Statement

Design a system that

I always satisfies some safety property,
I but is otherwise capable of arbitrary

self-improvement.



Problem of Self Trust

Too little self-trust
Cannot make simple self-modifications

Too much self-trust
Unsound reasoning about successors



Overview

Reflective Reasoning

I Self-Modifying Agents

I Vingean Reflection

I Suggester-Verifier Architecture

I Problem and Partial Solutions

Implementation

I Botworld

I Formalisation in HOL



Reflective Reasoning



The Agent Framework

environment agent (π)
observation+reward

action

π(oa1:n) = an+1

Cartesian boundary

I agent computed outside environment



The Agent Framework

environment agent (π)
observation+reward

action

π(oa1:n) = an+1

Cartesian boundary

I agent computed outside environment



Reality is not Cartesian

agent

environment

πn(on) = (an+1, pπn+1q)



Reality is not Cartesian

agent

environment

πn(on) = (an+1, pπn+1q)



Vingean Principle

One can reason only abstractly about a
stronger reasoner

Relevance
Self-improving system must reason about programs it cannot run:
its successors

Approach

Formal logic as a model of abstract reasoning



Vingean Principle

One can reason only abstractly about a
stronger reasoner

Relevance
Self-improving system must reason about programs it cannot run:
its successors

Approach

Formal logic as a model of abstract reasoning



Vingean Principle

One can reason only abstractly about a
stronger reasoner

Relevance
Self-improving system must reason about programs it cannot run:
its successors

Approach

Formal logic as a model of abstract reasoning



Suggester-Verifier Architecture

Suggester
sophisticated, untrusted

observation

Verifier

π, a

proof

or defaultπ, a

Verify: ` u(h(π, a)) ≥ u(h(default)) (≈ Safe(a))



Suggester-Verifier Architecture

Suggester
sophisticated, untrusted

observation

Verifier

π, a

proof

or defaultπ, a

Verify: ` u(h(π, a)) ≥ u(h(default)) (≈ Safe(a))



Suggester-Verifier Architecture

Suggester
sophisticated, untrusted

observation

Verifier

π, a

proof

or defaultπ, a

Verify: ` u(h(π, a)) ≥ u(h(default))

(≈ Safe(a))



Suggester-Verifier Architecture

Suggester
sophisticated, untrusted

observation

Verifier

π, a

proof

or defaultπ, a

Verify: ` u(h(π, a)) ≥ u(h(default)) (≈ Safe(a))



Problem with Self-Modification

Argument for Safety of Successor

I To create a successor, must prove that its actions will be safe

I If successor follows s-v architecture, it will only take actions it
has proven to be safe

I However, to conclude that an action is actually safe from a
proof is problematic.

This principle, T ` �Tpϕq =⇒ ϕ, is inconsistent.
(Gödel/Löb)



Problem with Self-Modification

Argument for Safety of Successor

I To create a successor, must prove that its actions will be safe

I If successor follows s-v architecture, it will only take actions it
has proven to be safe

I However, to conclude that an action is actually safe from a
proof is problematic.
This principle, T ` �Tpϕq =⇒ ϕ, is inconsistent.
(Gödel/Löb)



Partial Solutions

Descending Trust

T100 ` �T99
pϕq =⇒ ϕ, T99 ` �T98

pϕq =⇒ ϕ,
. . .

Model Polymorphism

0 < κ,T ` ∀n.�Tpϕ(n̄)q =⇒ ϕ[κ− 1/κ](n)



Partial Solutions

Descending Trust

T100 ` �T99
pϕq =⇒ ϕ, T99 ` �T98

pϕq =⇒ ϕ,
. . .

Model Polymorphism

0 < κ,T ` ∀n.�Tpϕ(n̄)q =⇒ ϕ[κ− 1/κ](n)



Model Polymorphism

0 < κ,T ` ∀n.�Tpϕ(n̄)q =⇒ ϕ[κ− 1/κ](n)

If Safe(a) ≡ ∀n. Safe(a, n)
Take ϕ(n) ≡ n ≤ κ =⇒ Safe(a, n)

∀a.�p∀n ≤ t + 1 + κ. Safe(ā, n)q =⇒
∀n ≤ t + κ. Safe(a, n)



Model Polymorphism

0 < κ,T ` ∀n.�Tpϕ(n̄)q =⇒ ϕ[κ− 1/κ](n)

If Safe(a) ≡ ∀n. Safe(a, n)
Take ϕ(n) ≡ n ≤ κ =⇒ Safe(a, n)

∀a.�p∀n ≤ t + 1 + κ. Safe(ā, n)q =⇒
∀n ≤ t + κ. Safe(a, n)



Model Polymorphism

0 < κ,T ` ∀n.�Tpϕ(n̄)q =⇒ ϕ[κ− 1/κ](n)

If Safe(a) ≡ ∀n. Safe(a, n)
Take ϕ(n) ≡ n ≤ κ =⇒ Safe(a, n)

∀a.�p∀n ≤ t + 1 + κ. Safe(ā, n)q =⇒
∀n ≤ t + κ. Safe(a, n)



Implementation



Botworld: Concrete Framework for Embedded Agents

Robots can construct/inspect/destroy/program other robots



Botworld Formalisation

Semantics

I step : state→ state

I Robots run policies in CakeML

Counterfactuals

I state-with-hole for proposed action

I steph : s-w-h→ a→ (obs, state) option



Botworld Formalisation

Semantics

I step : state→ state

I Robots run policies in CakeML

Counterfactuals

I state-with-hole for proposed action

I steph : s-w-h→ a→ (obs, state) option



Botworld Formalisation

Semantics

I step : state→ state

I Robots run policies in CakeML

Counterfactuals

I state-with-hole for proposed action

I steph : s-w-h→ a→ (obs, state) option



Botworld Formalisation

Semantics

I step : state→ state

I Robots run policies in CakeML

Counterfactuals

I state-with-hole for proposed action

I steph : s-w-h→ a→ (obs, state) option



Suggester-Verifier Implementation

sv(πdefault,σ,obs):

1. (π, a) = run πdefault

2. (π′, a′, thm) = run σ(obs, π, a)

3. Check thm has correct form

4. Write (π, a) or (π′, a′) accordingly

Reflection Library

Automation for: �pLCA k̄ =⇒ Pq implies LCA (k + 1) =⇒ P



Suggester-Verifier Implementation

sv(πdefault,σ,obs):

1. (π, a) = run πdefault

2. (π′, a′, thm) = run σ(obs, π, a)

3. Check thm has correct form

4. Write (π, a) or (π′, a′) accordingly

Reflection Library

Automation for: �pLCA k̄ =⇒ Pq implies LCA (k + 1) =⇒ P



Implementation Challenge

Project Proposal

Build a Botworld agent that self-modifies into a
provably safe agent of the same architecture.

Eventual Project

Discover how far theorem proving technology is
from implementing the above...



Implementation Challenge

Project Proposal

Build a Botworld agent that self-modifies into a
provably safe agent of the same architecture.

Eventual Project

Discover how far theorem proving technology is
from implementing the above...



Outlook

Implementing a Self-Improving Botworld Agent

I Looks possible, but with more effort than anticipated

I I would estimate 4 person-years.

(building on > 25 in prereqs)

I Improvements on model polymorphism would be nice!

Theorem Proving for AI

I Specifications Needed!

I Novel Architectures for AI Systems, e.g., improve on
Suggester-Verifier to support logical induction and
non-proof-based reasoning

I Reducing Problems to Functional Correctness



Outlook

Implementing a Self-Improving Botworld Agent

I Looks possible, but with more effort than anticipated

I I would estimate 4 person-years. (building on > 25 in prereqs)

I Improvements on model polymorphism would be nice!

Theorem Proving for AI

I Specifications Needed!

I Novel Architectures for AI Systems, e.g., improve on
Suggester-Verifier to support logical induction and
non-proof-based reasoning

I Reducing Problems to Functional Correctness



Outlook

Implementing a Self-Improving Botworld Agent

I Looks possible, but with more effort than anticipated

I I would estimate 4 person-years. (building on > 25 in prereqs)

I Improvements on model polymorphism would be nice!

Theorem Proving for AI

I Specifications Needed!

I Novel Architectures for AI Systems, e.g., improve on
Suggester-Verifier to support logical induction and
non-proof-based reasoning

I Reducing Problems to Functional Correctness



Outlook

Implementing a Self-Improving Botworld Agent

I Looks possible, but with more effort than anticipated

I I would estimate 4 person-years. (building on > 25 in prereqs)

I Improvements on model polymorphism would be nice!

Theorem Proving for AI

I Specifications Needed!

I Novel Architectures for AI Systems, e.g., improve on
Suggester-Verifier to support logical induction and
non-proof-based reasoning

I Reducing Problems to Functional Correctness



Outlook

Implementing a Self-Improving Botworld Agent

I Looks possible, but with more effort than anticipated

I I would estimate 4 person-years. (building on > 25 in prereqs)

I Improvements on model polymorphism would be nice!

Theorem Proving for AI

I Specifications Needed!

I Novel Architectures for AI Systems, e.g., improve on
Suggester-Verifier to support logical induction and
non-proof-based reasoning

I Reducing Problems to Functional Correctness



Outlook

Implementing a Self-Improving Botworld Agent

I Looks possible, but with more effort than anticipated

I I would estimate 4 person-years. (building on > 25 in prereqs)

I Improvements on model polymorphism would be nice!

Theorem Proving for AI

I Specifications Needed!

I Novel Architectures for AI Systems, e.g., improve on
Suggester-Verifier to support logical induction and
non-proof-based reasoning

I Reducing Problems to Functional Correctness


