Applying Formal Verification to Reflective Reasoning

<u>R. Kumar¹</u> B. Fallenstein²

¹Data61, CSIRO and UNSW ramana@intelligence.org

²Machine Intelligence Research Institute benya@intelligence.org

Artificial Intelligence for Theorem Proving, Obergurgl 2017

Who am I?

Ramana Kumar

PhD, University of Cambridge

Researcher, Data61, CSIRO

Theorem Proving in HOL

Source: Future of Humanity Institute, Oxford. See also: https://intelligence.org/why-ai-safety/

Highly Reliable Agent Design

Highly Reliable Agent Design

- Foundations
- Basic problems lacking in-principle solutions

Highly Reliable Agent Design

- Foundations
- Basic problems lacking in-principle solutions

(Note: This is not MIRI's only research agenda.)

One problem within MIRI's 2014 agenda happened to seem to align with my expertise, theorem proving and self-verification

Problem Statement

Design a system that

- always satisfies some safety property,
- but is otherwise capable of arbitrary self-improvement.

Too little self-trust

Cannot make simple self-modifications

Too much self-trust Unsound reasoning about successors

Overview

Reflective Reasoning

- Self-Modifying Agents
- Vingean Reflection
- Suggester-Verifier Architecture
- Problem and Partial Solutions

Implementation

- Botworld
- Formalisation in HOL

Reflective Reasoning

The Agent Framework

The Agent Framework

Cartesian boundary

agent computed outside environment

Reality is not Cartesian

Reality is not Cartesian

$$\pi_n(o_n) = (a_{n+1}, \lceil \pi_{n+1} \rceil)$$

< @ >

One can reason only abstractly about a stronger reasoner

Vingean Principle

One can reason only abstractly about a stronger reasoner

Relevance Self-improving system must reason about programs it cannot run: its successors

Vingean Principle

One can reason only abstractly about a stronger reasoner

Relevance Self-improving system must reason about programs it cannot run: its successors

Approach

Formal logic as a model of abstract reasoning

Verify: $\vdash u(h(\pi, a)) \ge u(h(\text{default}))$

Verify: $\vdash u(h(\pi, a)) \ge u(h(\text{default})) \ (\approx \text{Safe}(a))$

Problem with Self-Modification

Argument for Safety of Successor

- ► To create a successor, must prove that its actions will be safe
- If successor follows s-v architecture, it will only take actions it has proven to be safe
- However, to conclude that an action is *actually* safe from a *proof* is problematic.

Problem with Self-Modification

Argument for Safety of Successor

- ► To create a successor, must prove that its actions will be safe
- If successor follows s-v architecture, it will only take actions it has proven to be safe
- However, to conclude that an action is *actually* safe from a *proof* is problematic.
 This principle, T ⊢ □_T ¬φ¬ ⇒ φ, is inconsistent.
 (Gödel/Löb)

Partial Solutions

. . .

Descending Trust $T_{100} \vdash \Box_{T_{99}} \ulcorner \varphi \urcorner \implies \varphi, T_{99} \vdash \Box_{T_{98}} \ulcorner \varphi \urcorner \implies \varphi,$

Partial Solutions

Descending Trust $T_{100} \vdash \Box_{T_{99}} \ulcorner \varphi \urcorner \implies \varphi, T_{99} \vdash \Box_{T_{98}} \ulcorner \varphi \urcorner \implies \varphi,$...

Model Polymorphism $0 < \kappa, T \vdash \forall n. \Box_T \ulcorner \varphi(\bar{n}) \urcorner \implies \varphi[\kappa - 1/\kappa](n)$

Model Polymorphism

$0 < \kappa, T \vdash \forall n. \Box_T \ulcorner \varphi(\bar{n}) \urcorner \implies \varphi[\kappa - 1/\kappa](n)$

Model Polymorphism

$0 < \kappa, T \vdash \forall n. \Box_T \ulcorner \varphi(\bar{n}) \urcorner \implies \varphi[\kappa - 1/\kappa](n)$

If Safe(a)
$$\equiv \forall n$$
. Safe(a, n)
Take $\varphi(n) \equiv n \leq \kappa \implies$ Safe(a, n)

Model Polymorphism

$0 < \kappa, T \vdash \forall n. \Box_T \ulcorner \varphi(\bar{n}) \urcorner \implies \varphi[\kappa - 1/\kappa](n)$

If Safe(a)
$$\equiv \forall n$$
. Safe(a, n)
Take $\varphi(n) \equiv n \leq \kappa \implies$ Safe(a, n)

$$\forall a. \Box \ulcorner \forall n \leq \overline{t+1} + \kappa. \operatorname{Safe}(\overline{a}, n) \urcorner \Longrightarrow \\ \forall n \leq t + \kappa. \operatorname{Safe}(a, n)$$

Implementation

Botworld: Concrete Framework for Embedded Agents

Robots can construct/inspect/destroy/program other robots

Semantics

• step : state \rightarrow state

Semantics

- ▶ step : state \rightarrow state
- Robots run policies in CakeML

Semantics

- step : state \rightarrow state
- Robots run policies in CakeML

Counterfactuals

state-with-hole for proposed action

Semantics

- step : state \rightarrow state
- Robots run policies in CakeML

Counterfactuals

- state-with-hole for proposed action
- steph : s-w-h \rightarrow a \rightarrow (obs, state) option

Suggester-Verifier Implementation

 $sv(\pi_{default},\sigma,obs)$:

- 1. $(\pi, a) = \operatorname{run} \pi_{\operatorname{default}}$
- 2. $(\pi', a', \text{thm}) = \text{run } \sigma(\text{obs}, \pi, a)$
- 3. Check thm has correct form
- 4. Write (π, a) or (π', a') accordingly

Suggester-Verifier Implementation

 $sv(\pi_{default},\sigma,obs)$:

- 1. $(\pi, a) = \operatorname{run} \pi_{\operatorname{default}}$
- 2. $(\pi', a', \mathsf{thm}) = \mathsf{run} \ \sigma(\mathsf{obs}, \pi, a)$
- 3. Check thm has correct form
- 4. Write (π, a) or (π', a') accordingly

Reflection Library Automation for: $\Box \ LCA \ \bar{k} \implies P \$ implies LCA $(k+1) \implies P$

Implementation Challenge

Project Proposal

Build a Botworld agent that self-modifies into a *provably safe* agent of the same architecture.

Implementation Challenge

Project Proposal

Build a Botworld agent that self-modifies into a *provably safe* agent of the same architecture.

Eventual Project

Discover how far theorem proving technology is from implementing the above...

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- I would estimate 4 person-years.

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- ▶ I would estimate 4 person-years. (building on > 25 in prereqs)

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- ▶ I would estimate 4 person-years. (building on > 25 in prereqs)
- Improvements on model polymorphism would be nice!

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- ▶ I would estimate 4 person-years. (building on > 25 in prereqs)
- Improvements on model polymorphism would be nice!

Theorem Proving for AI

Specifications Needed!

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- ▶ I would estimate 4 person-years. (building on > 25 in prereqs)
- Improvements on model polymorphism would be nice!

Theorem Proving for AI

- Specifications Needed!
- Novel Architectures for AI Systems, e.g., improve on Suggester-Verifier to support logical induction and non-proof-based reasoning

Implementing a Self-Improving Botworld Agent

- Looks possible, but with more effort than anticipated
- ▶ I would estimate 4 person-years. (building on > 25 in prereqs)
- Improvements on model polymorphism would be nice!

Theorem Proving for AI

- Specifications Needed!
- Novel Architectures for AI Systems, e.g., improve on Suggester-Verifier to support logical induction and non-proof-based reasoning
- Reducing Problems to Functional Correctness

