
PROGRESS IN AUTOMATING FORMALIZATION

Josef Urban Jiří Vyskočil

Czech Technical University in Prague

AITP 2017, Obergurgl
March 27, 2017

1 / 26

Two Obstacles to Strong Computer Support for Math

1 Low reasoning power of automated reasoning methods, particularly over
large complex theories

2 Lack of computer understanding of current human-level (math and exact
science) knowledge

� The two are related: human-level math may require nontrivial reasoning
to become fully explained. Fully explained math gives us a lot of data for
training AITP systems.

� And we want to train AITP on human-level proofs too. Thus getting
interesting formalization/ATP/learning feedback loops.

� In 2014 we have decided that the AITP/hammer systems are getting
strong enough to try this. And we started to combine them with statistical
translation of informal-to-formal math.

� We are pretty cautious, but this really seems possible.

2 / 26

Favorable developments in the last decade

� Reasonably big formal corpora of common math are coming
� Reasonably strong proving methods over them are developed
� Large part of the latter was thanks to learning methods (40–50% of Mizar

theorems automatically provable today)
� We are even getting some aligned informal/formal corpora:
� Flyspeck, Compendium of Continuous Lattices, Feit-Thompson
� So let’s use what works:
� Statistical machine translation combined with strong learning-assisted

automated reasoning over large libraries providing the common
reasoning background!

3 / 26

Formal, Informal and Semiformal Corpora

� HOL Light and Flyspeck: some 25,000 theorems
� The Mizar Mathematical Library: some 60,000 theorems (most of them

rather small lemmas), 10,000 definitions
� Coq: several large projects (Feit-Thompson theorem, ...)
� Isabelle, seL4 and the Archive of Formal Proofs
� Arxiv.org: 1M articles collected over some 20 years (not just math)
� Wikipedia: 25,000 articles in 2010 - collected over 10 years only
� Proofwiki - LATEX but very semantic, re-invented the Mizar proof style

4 / 26

Experiments with Informalized Flyspeck

� 22000 Flyspeck theorem statements informalized
� 72 overloaded instances like “+” for vector_add
� 108 infix operators
� forget all “prefixes”

� real_, int_, vector_, nadd_, hreal_, matrix_, complex_
� ccos, cexp, clog, csin, ...
� vsum, rpow, nsum, list_sum, ...

� Deleting all brackets, type annotations, and casting functors
� Cx and real_of_num (which alone is used 17152 times).

5 / 26

Statistical Parsing of Informalized HOL

� Experiments with Stanford parser and CYK chart parser
� Examples (treebank) exported from Flyspeck formulas

� Along with their informalized versions
� Grammar parse trees

� Annotate each (nonterminal) symbol with its HOL type
� Also “semantic (formal)” nonterminals annotate overloaded terminals
� guiding analogy: word-sense disambiguation using CYK is common

� Terminals exactly compose the textual form, for example:
� REAL_NEGNEG: 8x :��x = x

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real"))))) (Var "A0" (Tyapp "real")))))

� becomes
("(̈Type bool)"̈ ! ("(̈Type (fun real bool))"̈ (Abs ("(̈Type real)"̈
(Var A0)) ("(̈Type bool)"̈ ("(̈Type real)"̈ real_neg ("(̈Type real)"̈
real_neg ("(̈Type real)"̈ (Var A0)))) = ("(̈Type real)"̈ (Var A0))))))

6 / 26

Example grammars

Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0

7 / 26

CYK Learning and Parsing

� Induce PCFG (probabilistic context-free grammar) from the trees
� Grammar rules obtained from the inner nodes of each grammar tree
� Probabilities are computed from the frequencies

� The PCFG grammar is binarized for efficiency
� New nonterminals as shortcuts for multiple nonterminals

� CYK: dynamic-programming algorithm for parsing ambiguous sentences
� input: sentence – a sequence of words and a binarized PCFG
� output: N most probable parse trees

� Additional semantic pruning
� Compatible types for free variables in subtrees

� Allow small probability for each symbol to be a variable
� Top parse trees are de-binarized to the original CFG

� Transformed to HOL parse trees (preterms, Hindley-Milner)

8 / 26

Things that type-check are still not too good
Why not use today’s AI/ATP (“hammers”)?

Proof Assistant Hammer ATP

Current Goal TPTP

ITP Proof ATP Proof

Can check which of the candidates are provable

9 / 26

Online parsing system

� “sin (0 * x) = cos pi / 2”

� produces 16 parses
� of which 11 get type-checked by HOL Light as follows
� with all but three being proved by HOL(y)Hammer

sin (&0 * A0) = cos (pi / &2) where A0:real
sin (&0 * A0) = cos pi / &2 where A0:real
sin (&0 * &A0) = cos (pi / &2) where A0:num
sin (&0 * &A0) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * A0)) = cos pi / &2 where A0:num
csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0) * A0) = ccos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2

10 / 26

What we can correctly parse

! A0 ! A1 ! A2 ! A3 ! A4 FAN vec 0 , V_SY vecmats A4 ,
E_SY vecmats A4 /\ 1 < dimindex UNIV /\ 1 <= A0
/\ A0 <= dimindex UNIV /\ row A0 vecmats A4 = A3
/\ row SUC A0 MOD dimindex UNIV vecmats A4 = A1
/\ row SUC SUC A0 MOD dimindex

UNIV MOD dimindex UNIV vecmats A4 = A2
/\ ! A5 ! A6 1 <= A5 /\ A5 <= dimindex UNIV /\ 1 <= A6
/\ A6 <= dimindex UNIV
/\ row A5 vecmats A4 = row A6 vecmats A4
==> A5 = A6 ==>
ivs_azim_cycle EE A1 E_SY vecmats A4 vec 0 A1 A2 = A3

11 / 26

Typechecking and proving over Flyspeck

� 698,549 of the parse trees typecheck (221,145 do not)
� 302,329 distinct (modulo alpha) HOL formulas
� For each HOL formula we try to prove it with a single AI-ATP method
� 70,957 (23%) can be automatically proved

� A significant part of them are not interesting because of wrong
parenthesizing

� In 39.4% of the 22,000 Flyspeck sentences the correct (training) HOL
parse tree is among the best 20 parses

� its average rank: 9.34

12 / 26

Recent Progress on Flyspeck

13 / 26

Betting Slide from IHP’14, Paris

� In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level
math curriculum textbooks will be parsed automatically and with correct
formal semantics

� Hurry up: I will only accept bets up to 10k EUR total (negotiable)
� More at http://ai4reason.org/aichallenges.html

14 / 26

http://ai4reason.org/aichallenges.html

Parsing Mizar – New Features

� More natural-language features than HOL (Andrzej was a linguist too)
� Arbitrary symbols, heavily overloaded
� Declarative natural-deduction style (re-invented in ProofWiki)
� Adjectives and their Prolog-style propagation (registrations)
� Dependent types
� Hidden arguments (derived from the context)
� Syntactic macros (synonyms, antonyms, expandable modes)
� This is all closer to LATEX, but also a big challenge

15 / 26

Parsing Mizar – Phase0: Treebank Creation

� New transformation of the Mizar internal XML based on the HTML-izer
� The main trick: instead of hyperlinking, use the links as disambiguating

nonterminals
� This is followed by using symbolic AI (ATP in our case) for mapping the syntax to

the semantic layer
� Example: RCOMP_1:5 in Mizar, Lisp, “semantic” TPTP and “syntactic” TPTP
� for s, g being real number holds [.s,g.] is closed

� (Bool "for" (Varlist (Set (Var "s")) "," (Varlist (Set (Var
"g")))) "being" (Type ($#nv1_xreal_0 "real")
($#nm1_ordinal1 "number")) "holds" (Bool (Set
($#nk1_rcomp_1 "[.") (Set (Var "s")) "," (Set (Var "g"))
($#nk1_rcomp_1 ".]")) "is" ($#nv2_rcomp_1 "closed")))

� ![A]: v1_xreal_0(A) => ! [B]: (v1_xreal_0(B) =>
v2_rcomp_1(k1_rcomp_1(A, B)))

� ![A]: ![B]: ((nm1_ordinal1(A) & nv1_xreal_0(A) &
nm1_ordinal1(B) & nv1_xreal_0(B)) =>
nv2_rcomp_1(nk1_rcomp_1(A,B))))).

16 / 26

Examples of Mizar’s Advanced Syntactic Mechanisms

definition
let P,R be set;
func P(#)R -> Relation means
[x,y] in it iff ex z st [x,z] in P & [z,y] in R;

end;
notation synonym P*R for P(#)R; end;
definition
let X,Y1,Y2,Z be set;
let P be Relation of X,Y1;
let R be Relation of Y2,Z;
redefine func P*R -> Relation of X,Z;

end;
notation
let f,g be Function;
synonym g*f for f*g;

end;

17 / 26

Examples of How This Is Translated

:: synonym g*f for f*g;
fof(dt_nk3_funct_1, axiom,(![A,B]:(((v1_relat_1(A) &
v1_funct_1(A)) & (v1_relat_1(B) & v1_funct_1(B)))
=> nk3_funct_1(B, A)=nk6_relat_1(B,A)))).

:: synonym P*R for P(#)R;
fof(dt_nk6_relat_1, axiom,(![A,B]:((v1_relat_1(A)
& v1_relat_1(B)) => nk6_relat_1(A, B)=nk5_relat_1(A, B)))).

18 / 26

Parsing Mizar – Phase1: Statistical Parsing and
Translation to Prolog/TPTP

� the most probable parses for an ambiguous Mizar-like sentence
� for s, g being real number holds [.s,g.] is closed

� becomes
� (Bool "for" (Varlist (Set (Var "s")) "," (Varlist (Set
(Var "g")))) "being" (Type ($#nv1_xreal_0 "real")
($#nm1_ordinal1 "number")) "holds" (Bool (Set
($#nk1_rcomp_1 "[.") (Set (Var "s")) "," (Set (Var
"g")) ($#nk1_rcomp_1 ".]")) "is" ($#nv2_rcomp_1
"closed")))

� which is postprocessed (Lisp-to-TPTP) into the “syntactic TPTP”:
� ![A]: ![B]: ((nm1_ordinal1(A) & nv1_xreal_0(A) &
nm1_ordinal1(B) & nv1_xreal_0(B)) =>
nv2_rcomp_1(nk1_rcomp_1(A,B))))).

19 / 26

Parsing Mizar – Phase2: ATP connects the layers

� About 13000 Prolog-style formulas encoding the relation between
user-level syntax and the semantic (MPTP) encoding

� Also the full set of Mizar typing rules needed for this!
� Altogether about 30000 background knowledge rules used for the

mapping - pretty bad
� We try to prove that the syntactic form is implied by the semantic form
� Relatively non-trivial task for ATPs, requires premise selection and good

ATP strategies
� Vampire: about 40% proved in 60s
� Targeted E strategies invented automatically on the corpus by our

BliStrTune system: about 50% proved (by 14 strategies)

20 / 26

Parsing Mizar – Phase2: Example ATP problem

include(’../stdincl’).
fof(t5_rcomp_1,axiom,(! [A] : (v1_xreal_0(A) => ! [B] :
(v1_xreal_0(B) => v2_rcomp_1(k1_rcomp_1(A,B)))))).
fof(c_t5_rcomp_1,conjecture,(! [A] : ! [B] : (
(nm1_ordinal1(A) & nv1_xreal_0(A) & nm1_ordinal1(B) &
nv1_xreal_0(B)) => nv2_rcomp_1(nk1_rcomp_1(A,B))))).

21 / 26

Further Improvements of the Parsing – Three Pass
Algorithm

� bottom-up pass, we use CYK to compute only the set of reachable
nonterminals for every cell in the parsing chart (instead of computing all
partial parses)

� top-down pass we prune from the chart all nonterminals that cannot be
reached from the top

� (bottom-up) parse we run the standard (full) CYK, however avoiding the
unreachable nonterminals detected before

� => about 30% speedup on Mizar dataset

22 / 26

Further Improvements of the Parsing – Occam’s Razor

� Occam’s Razor to prefer simpler parses, where simpler means that the
parse was constructed using fewer parsing rules

� this discourages e.g. from formulas that parse the very overloaded
symbol + in many different ways

�
probability of a standard partial parse

num of all parsing rules of a partial parse

23 / 26

First Mizar Results (100-fold Cross-validation)

24 / 26

Future Work

� Starting to look at full Mizar proofs and their alignment to ProofWiki
� Tighter integration of probabilistic parsing with semantic pruning (simple

congruence closure already in)
� More corpora ! more alignments ! more knowledge ! ...
� Smarter parsing methods
� Looping self-teaching systems:
� train on some data ! parse ! typecheck/prove the parses ...
� ... and thus get more data to train on ! loop ...
� merge with other AI/ATP self-improving systems (MaLARea, concept

alignment)

25 / 26

Thanks for listening!

� Questions?

26 / 26

	AI / ATP in parsing and proving

