AnIsabelle Formalization
ofthe Expressiveness
of Deep Learning

Alexander Bentkamp vrije Universiteit Amsterdam

Jasmin Blanchette vrije Universiteit Amsterdam

Dietrich Klakow universitat des Saarlandes

Motivation

» Case study of proof assistance in the field of
machine learning

» Development of general-purpose libraries

» Study of the mathematics behind deep learning

Motivation

» Case s istance in the field of

» Development al-purpose libraries

» Study of the hind deep learning

Just wanted to formalize something!

Fundamental Theorem of Network Capacity
(Cohen, Sharir & Shashua, 2015)

Shallow network === = = =

for the vast majority of functions*®

* except for a Lebesgue null set 2

Deep convolutional arithmetic circuit

o

e | R L | S O S
Layer 1 M M M M M M
T I . N N S . .
[iru = =,
2, 2. 2, 2.
: a e al
X7, =7,
Mutiphcation by | S i
a weight matrix |~ =
Pooling i,—
Componentwise @
Multiplication .y

Shallow convolutional arithmetic circuit

Representational Input
Layer
Non-linear
functions

M @.‘1 @.‘. @.‘: @.’:
Vo S

z

==

N

L TR
2, 82y Az,

z

1x1 Convolution
Multiplication by
a weight matrix

Pooling
Componentwise

4
owpr] ¥ :
Multiplication Output v

Lebesgue measure

definition lborel :: (« :: euclidean_space) measure
K/ Isabelle’s standard probability Llibrary

VS.

/\ My new definition

definition lborel; :: nat = (nat = real) measure
where lborelf n =
[Iub € {.. < n}. (lborel: real measure)

Matrices

» Isabelle’s multivariate analysis library

» Sternagel & Thiemann’s matrix library
(Archive of Formal Proofs, 2010)

» Thiemann & Yamada’s matrix library
(Archive of Formal Proofs, 2015)

Matrices

matrix dimension fixed by the type

» Isabelle’s multivariate analysis libraryJ

» Sternagel & Thiemann’s matrix library
(Archive of Formal Proofs, 2010)

» Thiemann & Yamada’s matrix library
(Archive of Formal Proofs, 2015)

Matrices

matrix dimension fixed by the type

» Isabelle’s multivariate analysis libraryJ
» Sternagel & Thiemann’s matrix library<

(Archive of Formal Proofs, 2010) lacking many necessary lemmas
» Thiemann & Yamada’s matrix library
(Archive of Formal Proofs, 2015)

Matrices
matrix dimension fixed by the type

» Isabelle’s multivariate analysis libraryJ

» Sternagel & Thiemann’s matrix library<
(Archive of Formal Proofs, 2010) lacking many necessary lemmas

» Thiemann & Yamada’s matrix library
(Archive of Formal Proofs, 2015)

I added definitions and lemmas for
» matrix rank
» submatrices

Multivariate polynomials

Lochbihler & Haftmann’s polynomial library

I added various definitions, lemmas, and the theorem

» "Zero sets of polynomials # 0 are Lebesgue null sets.”

theorem:
fixes p :: real mpoly
assumes p #0and varsp C {.. < n}
shows {x € space (lborels n). insertion x p = 0}
€ null_sets (lborels n)

My tensor library

typedef o tensor =
{(ds :: nat list, as :: « list). length as = prod_Llist ds}

» addition, multiplication by scalars,
tensor product, matricization, CP-rank

» Powerful induction principle uses subtensors:

» Slicesa d; xd; x --- x dy tensor into
dq subtensors of dimension d; x --- x dy

definition subtensor :: « tensor = nat = a tensor

The proof on one slide

Defl Define a tensor A(w) that describes the function
expressed by the deep network with weights w

Lem1 The CP-rank of A(w) indicates how many nodes
the shallow network needs to express the same
function

Def2 Define a polynomial p with the deep network
weights w as variables

Lem2 If p(w) # 0O, then A(w) has a high CP-rank

Lem3 p(w) # 0 almost everywhere

Restructuring the proof

Before

’ Defl Tensors ‘

’ Lem1 Tensors, shallow network ‘

Induction over the deep network
Lem2 Polynomials, Matrices

Def2 Polynomials, Tensors

Lem3a Matrices, Tensors

Lem3b Measures, Polynomials

After

’ Defl Tensors ‘

’ Lem1l Tensors, shallow network ‘

Induction over the deep network
’ Def2 Polynomials, Tensors ‘

’ Lem2 Polynomials, Matrices ‘

Induction over the deep network
’ Lem3a Matrices, Tensors ‘

’ Lem3b Measures, Polynomials ‘

10

Restructuring the proof

Before*

’ Defl Tensors ‘

’ Lem1 Tensors, shallow network ‘

Induction over the deep network
Lem2 Polynomials, Matrices

Def2 Polynomials, Tensors

Lem3a Matrices, Tensors

Lem3b Measures, Polynomials

* except for a Lebesgue null set

After”

’ Defl Tensors ‘

’ Lem1l Tensors, shallow network ‘

Induction over the deep network
’ Def2 Polynomials, Tensors ‘

’ Lem2 Polynomials, Matrices ‘

Induction over the deep network
’ Lem3a Matrices, Tensors ‘

’ Lem3b Measures, Polynomials ‘

* except for a zero set of a polynomial

10

Type for convolutional arithmetic circuits

datatype o cac =
‘Input nat‘ | | Conv a (a cac) ‘ | ’ Pool (a cac) (a cac) ‘

11

Type for convolutional arithmetic circuits

datatype o cac =
‘Input nat‘ | | Conv a (a cac) ‘ | ’ Pool (a cac) (a cac) ‘

fun insert_weights ::
(nat x nat) cac = (nat = real) = real mat cac
N————

network without weights weights network with weights

11

Type for convolutional arithmetic circuits

datatype o cac =
‘Input nat‘ | | Conv a (a cac) ‘ | ’ Pool (a cac) (a cac) ‘

fun insert_weights ::
(nat x nat) cac = (nat = real) = real mat cac
N————

network without weights weights network with weights

fun evaluate_net :: real mat cac = real vec list = real vec
- N—_——

network input output

11

Deep network parameters

locale deep_net_params =
fixes rs :: nat list
assumes deep: lengthrs > 3
and no_zeros: Ar.resetrs—=-0<r

12

Deep and shallow networks

deep_net = shallow_net Z =
’InputHInputHInputHInput‘ ww
Conv || Conv || Conv || Conv Input|| Conv | | Conv
(rgxrz) [| (rgxrz) || (r2xrz) || (r2xr3) (Zxrz) | | (Zxr3)

Pool Pool Input || Conv lPooH
\—'—‘ (Zxr3)

Conv Conv Conv | Pool]
(ry xrp) (ry xrp) (Zxrz)
Pool Pool
Conv Conv
(roxrq) (roXZ)

Defl Define a tensor A(w) that describes the function
expressed by the deep network with weights w

definition A :: (nat = real) = real tensor
where A w = tensor_from_net (insert_weights deep_net w)

The function tensor_from_net represents networks by
tensors:

fun tensor_from_net :: real mat cac = real tensor
If two networks express the same function, the

representing tensors are the same

14

Lem1 The CP-rank of A(w) indicates how many nodes
the shallow network needs to express the same
function

lemma cprank_shallow_model:
shows cprank (tensor_from_net
(insert_weights w (shallow_net Z2))) < Z

» Can be proved by definition of the CP-rank

15

Def2 Define a polynomial p with the deep network
weights w as variables

Easy to define as a function:

definition psync :: (Nat = real) = real where
Psunc W = det (submatrix [4; w] rows_with_1 rows_with_1)

But we must prove that psnc is a polynomial function

16

Lem2 If p(w) # 0, then A(w) has a high CP-rank

lemma
assumes psync W # 0

shows rN-"af < cprank (A w)

» Follows directly from definition of p using
properties of matricization and of matrix rank

17

Lem3 p(w) # 0 almost everywhere

Zero sets of polynomials # 0 are Lebesgue null sets
— It suffices to show that p 0

We need a weight configuration w with p(w) # 0

18

Final theorem

theorem
Va.e Wg w.r.t. Lborels weight_space_dim. 3w, Z.
Z< I'N_half A
Vis. input_correct is —
evaluate_net (insert_weights deep_net wy) is =
evaluate_net (insert_weights (shallow_net Z) w;) is

19

Conclusion

Outcome
» First formalization on deep learning
Substantial development (~ 7000 lines including developed libraries)

» Development of libraries
New tensor library and extension of other libraries

» Generalization of the theorem
Proof restructuring led to a more precise result

More information:
http://matryoshka.gforge.inria.fr/#Publications

AITP abstra \
a st\ct/ / \ M.Sc. thesis

Archive of Formal Proofs entr
v ITP paper draft (coming soon)

20

