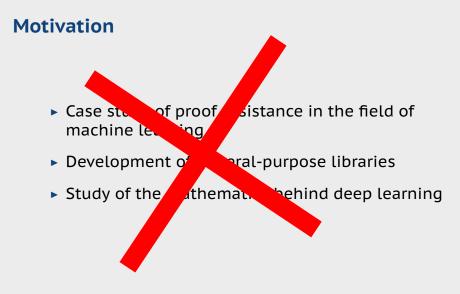
An Isabelle Formalization of the Expressiveness of Deep Learning

> Alexander Bentkamp Jasmin Blanchette Vrije Universiteit Amsterdam

> > Dietrich Klakow Universität des Saarlandes

Motivation

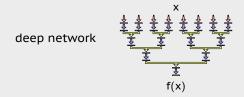
- Case study of proof assistance in the field of machine learning
- Development of general-purpose libraries
- Study of the mathematics behind deep learning



Just wanted to formalize something!

Fundamental Theorem of Network Capacity (Cohen, Sharir & Shashua, 2015)

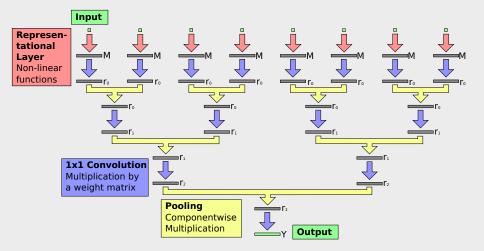
needs exponentially more nodes to express the same function as



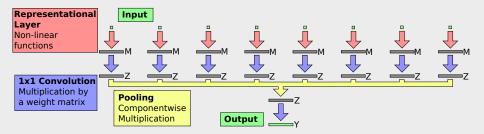
for the vast majority of functions*

* except for a Lebesgue null set

Deep convolutional arithmetic circuit



Shallow convolutional arithmetic circuit

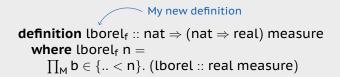


Lebesgue measure

definition lborel :: (α :: euclidean_space) measure

____ Isabelle's standard probability library

VS.



- Isabelle's multivariate analysis library
- Sternagel & Thiemann's matrix library (Archive of Formal Proofs, 2010)
- Thiemann & Yamada's matrix library (Archive of Formal Proofs, 2015)

matrix dimension fixed by the type

- Isabelle's multivariate analysis library
- Sternagel & Thiemann's matrix library (Archive of Formal Proofs, 2010)
- Thiemann & Yamada's matrix library (Archive of Formal Proofs, 2015)

matrix dimension fixed by the type

- Isabelle's multivariate analysis library,
- Sternagel & Thiemann's matrix library (Archive of Formal Proofs, 2010)
 Lacking many necessary lemmas
- Thiemann & Yamada's matrix library

(Archive of Formal Proofs, 2015)

matrix dimension fixed by the type

- Isabelle's multivariate analysis library
- Sternagel & Thiemann's matrix library (Archive of Formal Proofs, 2010)
 Lacking many necessary lemmas
- Thiemann & Yamada's matrix library (Archive of Formal Proofs, 2015)

I added definitions and lemmas for

- matrix rank
- submatrices

Multivariate polynomials

Lochbihler & Haftmann's polynomial library

I added various definitions, lemmas, and the theorem

► "Zero sets of polynomials ≠ 0 are Lebesgue null sets."

My tensor library

```
typedef \alpha tensor = {(ds :: nat list, as :: \alpha list). length as = prod_list ds}
```

- addition, multiplication by scalars, tensor product, matricization, CP-rank
- Powerful induction principle uses subtensors:
 - Slices a d₁ × d₂ × ··· × d_N tensor into d₁ subtensors of dimension d₂ × ··· × d_N

definition subtensor :: α tensor \Rightarrow nat $\Rightarrow \alpha$ tensor

The proof on one slide

- Def1 Define a tensor $\mathcal{A}(w)$ that describes the function expressed by the deep network with weights w
- Lem1 The CP-rank of $\mathcal{A}(w)$ indicates how many nodes the shallow network needs to express the same function
 - Def2 Define a polynomial p with the deep network weights w as variables
- Lem2 If $p(w) \neq 0$, then A(w) has a high CP-rank
- Lem3 $p(w) \neq 0$ almost everywhere

Restructuring the proof

Before

Def1	Tensors
Lem1	Tensors, shallow network
Induction over the deep network	
Lem2	Polynomials, Matrices
Def2	Polynomials, Tensors
Lem3a	Matrices, Tensors
Lem3b	Measures, Polynomials

After

Def1 Tensors

Lem1 Tensors, shallow network

Induction over the deep network

Def2 Polynomials, Tensors

Lem2 Polynomials, Matrices

Induction over the deep network

Lem3a Matrices, Tensors

Lem3b Measures, Polynomials

Restructuring the proof

Before*

Def1	Tensors
Lem1	Tensors, shallow network
Induction over the deep network	
Lem2	Polynomials, Matrices
Def2	Polynomials, Tensors
Lem3a	Matrices, Tensors
Lem3b	Measures. Polvnomials

* except for a Lebesgue null set

After*

Def1 Tensors

Lem1 Tensors, shallow network

Induction over the deep network

Def2 Polynomials, Tensors

Lem2 Polynomials, Matrices

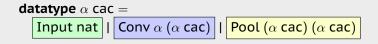
Induction over the deep network

Lem3a Matrices, Tensors

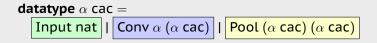
Lem3b Measures, Polynomials

* except for a zero set of a polynomial

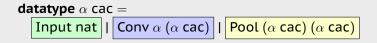
Type for convolutional arithmetic circuits

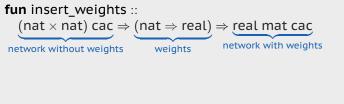


Type for convolutional arithmetic circuits



Type for convolutional arithmetic circuits



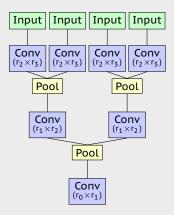


 $fun evaluate_net :: \underbrace{real mat cac}_{network} \Rightarrow \underbrace{real vec \ list}_{input} \Rightarrow \underbrace{real vec}_{output}$

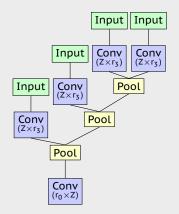
Deep network parameters

Deep and shallow networks

$deep_net =$



shallow_net Z =



Def1 Define a tensor $\mathcal{A}(w)$ that describes the function expressed by the deep network with weights w

 $\begin{array}{l} \mbox{definition } \mathcal{A} :: (nat \Rightarrow real) \Rightarrow real \ tensor \\ \mbox{where } \mathcal{A} \ w = tensor_from_net \ (insert_weights \ deep_net \ w) \end{array}$

The function tensor_from_net represents networks by tensors:

fun tensor_from_net :: real mat cac \Rightarrow real tensor

If two networks express the same function, the representing tensors are the same

Lem1 The CP-rank of $\mathcal{A}(w)$ indicates how many nodes the shallow network needs to express the same function

Can be proved by definition of the CP-rank

Def2 Define a polynomial p with the deep network weights w as variables

Easy to define as a function:

 $\begin{array}{l} \textbf{definition} \ p_{func} :: (nat \Rightarrow real) \Rightarrow real \ \textbf{where} \\ p_{func} \ w = det \ (submatrix \ [\mathcal{A}_i \ w] \ rows_with_1 \ rows_with_1) \end{array}$

But we must prove that p_{func} is a polynomial function

Lem2 If $p(w) \neq 0$, then $\mathcal{A}(w)$ has a high CP-rank

```
\label{eq:product} \begin{array}{l} \mbox{lemma} \\ \mbox{assumes } p_{func} \ w \neq 0 \\ \mbox{shows } r^{N\_half} \leq cprank \ (\mathcal{A} \ w) \end{array}
```

 Follows directly from definition of p using properties of matricization and of matrix rank

Zero sets of polynomials $\not\equiv 0$ are Lebesgue null sets \Longrightarrow It suffices to show that $p\not\equiv 0$

We need a weight configuration w with $\ p(w) \neq 0$

Final theorem

theorem

 $\begin{array}{l} \forall_{ae}\,w_{d}\,w.r.t.\;lborel_{f}\;weight_space_dim.\;\nexistsw_{s}\;Z.\\ Z < r^{N_half}\;\land\\ \forall is.\;input_correct\;is \rightarrow\\ evaluate_net\;(insert_weights\;deep_net\;w_{d})\;is =\\ evaluate_net\;(insert_weights\;(shallow_net\;Z)\;w_{s})\;is \end{array}$

Conclusion

Outcome

First formalization on deep learning
Substantial development (~ 7000 lines including developed libraries)

Development of libraries

New tensor library and extension of other libraries

Generalization of the theorem

Proof restructuring led to a more precise result

More information:

http://matryoshka.gforge.inria.fr/#Publications

AITP abstract

Archive of Formal Proofs entry

ITP paper draft (coming soon)

M.Sc. thesis