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Motivation
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I Case study of proof assistance in the field of
machine learning

I Development of general-purpose libraries

I Study of the mathematics behind deep learning

Just wanted to formalize something!
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Fundamental Theorem of Network Capacity
(Cohen, Sharir & Shashua, 2015)
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for the vast majority of functions*

* except for a Lebesgue null set



Deep convolutional arithmetic circuit
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Shallow convolutional arithmetic circuit
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Lebesgue measure
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definition lborel :: (α :: euclidean_space)measure

vs.

definition lborelf :: nat⇒ (nat⇒ real)measure
where lborelf n =∏

M b ∈ {.. < n}. (lborel :: real measure)

Isabelle’s standard probability library

My new definition



Matrices
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I Isabelle’s multivariate analysis library
I Sternagel & Thiemann’s matrix library
(Archive of Formal Proofs, 2010)

I Thiemann & Yamada’s matrix library
(Archive of Formal Proofs, 2015)

I added definitions and lemmas for
I matrix rank
I submatrices
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Multivariate polynomials
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Lochbihler & Haftmann’s polynomial library

I added various definitions, lemmas, and the theorem
I "Zero sets of polynomials 6≡ 0 are Lebesgue null sets."

theorem:
fixes p :: real mpoly
assumes p 6= 0 and vars p ⊆ {.. < n}
shows {x ∈ space (lborelf n). insertion x p = 0}

∈ null_sets (lborelf n)



My tensor library
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typedef α tensor =
{(ds :: nat list,as :: α list). length as = prod_list ds}

I addition, multiplication by scalars,
tensor product, matricization, CP-rank

I Powerful induction principle uses subtensors:
I Slices a d1 × d2 × · · · × dN tensor into
d1 subtensors of dimension d2 × · · · × dN

definition subtensor :: α tensor⇒ nat⇒ α tensor



The proof on one slide
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Def1 Define a tensor A(w) that describes the function
expressed by the deep network with weights w

Lem1 The CP-rank of A(w) indicates how many nodes
the shallow network needs to express the same
function

Def2 Define a polynomial p with the deep network
weights w as variables

Lem2 If p(w) 6= 0, then A(w) has a high CP-rank

Lem3 p(w) 6= 0 almost everywhere



Restructuring the proof
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Type for convolutional arithmetic circuits
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datatype α cac =
Input nat | Conv α (α cac) | Pool (α cac) (α cac)

fun insert_weights ::
(nat× nat) cac︸ ︷︷ ︸

network without weights

⇒ (nat⇒ real)︸ ︷︷ ︸
weights

⇒ real mat cac︸ ︷︷ ︸
network with weights

fun evaluate_net :: real mat cac︸ ︷︷ ︸
network

⇒ real vec list︸ ︷︷ ︸
input

⇒ real vec︸ ︷︷ ︸
output
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Deep network parameters
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locale deep_net_params =
fixes rs :: nat list
assumes deep: length rs ≥ 3
and no_zeros:

∧
r. r ∈ set rs =⇒ 0 < r



Deep and shallow networks
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Def1 Define a tensor A(w) that describes the function
expressed by the deep network with weights w

definition A :: (nat⇒ real)⇒ real tensor
where A w = tensor_from_net (insert_weights deep_net w)

The function tensor_from_net represents networks by
tensors:

fun tensor_from_net :: real mat cac⇒ real tensor

If two networks express the same function, the
representing tensors are the same
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Lem1 The CP-rank of A(w) indicates how many nodes
the shallow network needs to express the same
function

lemma cprank_shallow_model:
shows cprank (tensor_from_net

(insert_weights w (shallow_net Z))) ≤ Z

I Can be proved by definition of the CP-rank
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Def2 Define a polynomial p with the deep network
weights w as variables

Easy to define as a function:

definition pfunc :: (nat⇒ real)⇒ real where
pfunc w = det (submatrix [Ai w] rows_with_1 rows_with_1)

But we must prove that pfunc is a polynomial function
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Lem2 If p(w) 6= 0, then A(w) has a high CP-rank

lemma
assumes pfunc w 6= 0
shows rN_half ≤ cprank (A w)

I Follows directly from definition of p using
properties of matricization and of matrix rank
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Lem3 p(w) 6= 0 almost everywhere

Zero sets of polynomials 6≡ 0 are Lebesgue null sets
=⇒ It suffices to show that p 6≡ 0

We need a weight configuration w with p(w) 6= 0



Final theorem
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theorem
∀aewd w.r.t. lborelf weight_space_dim. @ws Z.
Z < rN_half ∧
∀is. input_correct is −�→
evaluate_net (insert_weights deep_net wd) is =
evaluate_net (insert_weights (shallow_net Z) ws) is



Conclusion
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Outcome
I First formalization on deep learning
Substantial development (∼ 7000 lines including developed libraries)

I Development of libraries
New tensor library and extension of other libraries

I Generalization of the theorem
Proof restructuring led to a more precise result

More information:
http://matryoshka.gforge.inria.fr/#Publications

AITP abstract

Archive of Formal Proofs entry
ITP paper draft (coming soon)

M.Sc. thesis


