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Machine Learning

Supervised Learning Task

e Assume G:D — P Ground truth G

® f:DxM-—FP Model architecture f
e 0. PxP —R Prediction metric o

e SCDxP Training samples S

Find model parameters m ¢ M such that the expected

E(o(F(d,m),G(d)) is minimized



Machine Learning

Unsupervised Learning

Set of tasks that work on the uncurated data.

Predict properties that are inherently present in the data
alone.



Machine Learning

Generative Learning Task

o u:Q(D)— |0 1] Input space with probability measure
e f:/01"XM — D Generative model architecture

Find model parameters m ¢ M such that: « (f(S, m)) ~ 4’ (S)



Machine Learning

Supervised Learning as Marginal Computation

o u:Q(DXP)—jo1] Expanded Input space
o f:01"XDXM — P Conditional generative model.

Find model parameters m ¢ M such that: « (f(S, d, m)[d) ~ «’ (S)
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Deep versus Shallow Learning

Predictor Predictor

e ———

Hand crafted Features Learned Features

e Mostly convex, provably

tractable. e Mostly NP-Hard

e Special purpose e General purpose
solvers. solvers.

e Non-layered e Hierarchical models

Traditional machine architectures.

D .
learning eep Learning



Provably Tractable Deep Learning Approaches

e Sum-Product networks [by Hoifung Poon and Pedro Domingos]
o Can learn generative models
o Hierarchical structure
o Automated learning of low level features
o Tractable training/inference under certain conditions
o Practical implementations

e Provable Bounds for Learning Some Deep Representations [Sanjeev
Arora, Aditya Bhaskara, Rong Ge and Tengyu Ma]

o Can learn generative models.

Hierarchical structure

Automated learning of low level features

Provably tractable for extremely sparse graphs

Creates deep and sparse artificial neural networks

Based on the polynomial time solvable graph-square-root problem.

o O O O O



Classical Feed-Forward Artificial Neural Networks

Input Loss
—| W_x+b, —| tanh(x) — W, x+b, — — > ]
v 1 1 ( ) 2 2 Wx+b tanh[x] (eg SVM)
Each sample is a (Element-wise
vector nonlinearity)

Minimize Z loss(N (W1, b1, ..., Wy, by;v))

Multilayer perceptron [Frank Rosenblatt, 1961]



Classical Feed-Forward Artificial Neural Networks

Input Loss
—| W_x+b, —| tanh(x) — W, x+b, — — > ]
v 1 1 ( ) 2 2 Wx+b tanh[x] (eg SVM)
Each sample is a (Element-wise
vector nonlinearity)

Minimize Z loss(N (W1, b1, ..., Wy, by;v))

In today’s networks, tanh is increasingly replaced by max(x, 0)
(Rectified linear units or ReLUs)



Classical Feed-Forward Artificial Neural Networks

Input Loss
—| W_x+b, —| tanh(x) — W, x+b, — — > ]
Vv 1 1 ( ) 2 2 Wx+b tanh[x] (eg SVM)
Each sample is a (Element-wise
vector nonlinearity)

Minimize Z loss(N (W1, b1, ..., Wy, by;v))

A highly nonlinear function!

Huge Sum, ranges over all
training examples!



Optimizing the Neural Network Parameters
with M = (W1, by, ..., Wy, bp)
Minimize Z ZOSS(N(M; U))

v



Optimizing the Neural Network Parameters
with M = (W1, by, ..., Wy, bn)
Minimize E ZOSS(N(M:,U))

v
Use gradient descent in the parameter space:

0
M, 1 «— M; Qo ;ZOSS(N(M@',,’U))




Stochastic Gradient Descent
M| e My—a-2 > loss(N(M;,v))
11 Z/OfaM 8 0SS 75 U

Learning rate a

0
Mi—H — M@' aaM EZB ZOSS(N(M@',,?)))
LAt

S
Randomly sampled Minibatch B.



Compute derivatives via chain rule

Input - - -, Loss
’ —| W,x+b, tanh(x) W,x+b, — Wx+b [—| tanh(x) [— (e.g SVM)
Each sample is a (Element-wise Local gradient of the
vector nonlinearity) function involved:

0 o -
~—F(G(p, H(x))) = DF(G(p, H(2))))5-G(p, H(x)))

Gradients propagated by a

backward pass recursively Forward propagated
function values

Backpropagation algorithm Rummelhart et al. 1986



Sketch of Deep Artificial Neural Network Training

e Sample batch B of training examples
e Maintain network parameters

M — (leblﬂ . ..,Wn,bn)

e Compute network output N(v) for each training example v

e Compute loss(N(v)) of each of the predictions.

e Use backpropagation to compute the gradients g with
respect to the model parameters.

e Update M by subtracting ag.




Real Life Deep Network Training

e Data collection and preprocessing and input encoding

e (Choosing a suitable framework that can do automatic
differentiation.

e Designing suitable network architecture

e Using more sophisticated optimizers

e [Implementation optimization:

o Hardware acceleration, esp. GPU
o Distributed training using multiple model replicas

e Choose hyperparameters like learning rate and weights
for auxiliary losses.



Convolutional Networks

Convolution layer Max-pooling layer

Features maps Input for

next layer
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Input image

(Image credit: Yann Lecun)

Spatial Parameter-sharing. Neocognitron by [K. Fukushima,
1980].
Convolutional Neural Network, by Yann Lecun et al. (1988).
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Low level features learned by vision networks

ImageNet Classification with Deep Convolutional Neural Networks
[Alex Krizhevsky, llya Sutskever, and Geoffrey Hinton 2012]



DeepDream visualization of internal feature
representation

Starting from white
noise image,
backpropagate the
gradient from a
trained network to the
image pixel and try to
maximize the
response of various
feature outputs.

[Alexander Mordvintsev, Christopher Olah, Mike Tyka, 2015]



Cambrian Explosion of Deep Vision Research

1g=sa-{ Zeiler-Fergus Network (ILSVRC
winner 2013)

afeafaggliggiag i o0
e BE i E gaaid

Inception-v1 (GooglLeNet), ILSVRC winner 2014



Image Recognition Performance (ILSVRC)
30 — Top-5 Erraor

Fisher Vectors + Hand

crafted features 225
=
E?J 15
8
= Better than-human
75 performance
Task: 1000 fine /
grained classes a \
including the 1712011 1/1/201 17172013 17172014 1/1/2015
difference between
“Eskimo dog” and Year
“Siberian husky” _ _ :
Convolutional networks Inception-v1 Residual
convolutional network

convolutional network



Siberian husky Eskimo dog

Example images from the ImageNet dataset (ImageNet Large Scale Visual Recognition Challenge, IJCV 2015 by
Russakovsky et al)



Object Detection

VOC benchmark: detecting objects for 20 different
categories (persons, cars, cats, blrds potted plants bottles,
chairs etc.) TR |

State of the art;

sheepFantaIOn:c '
zhe EpFrDI‘ItE ID::::

Pre-deep Deep-learning _ sh%q?l ol g
learning in model 2015
2013 (Deformable

Parts)

36% mMmAP 78% mAP




Stylistic Transfer using Deep Neural Features

Source: Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork,

nucl.ai Conference 2016 by Alex J. Champandard [2010]
http://arxiv.org/pdf/1603.01768v1.pdf



Real Life Applications of Deep Vision Networks

Google Image and Photo Search (Inception-v2)
Face detection and tagging in Google photos
PlaNet Identifying the location where image was taken
StreetView privacy protection

_ BbiXO/ B rOPOA -
Google Visual Translate
Nvidia’'s DriveNet

A "ACCESSTOCITY

All of the above applications use variants
of the Inception network architecture.




Recurrent Neural Networks

L
o~ [l A ]
© ® ©

Parameter-sharing over time.
LSTM: Long-short term memory by [Sepp Hochreiter, JO

urgen Schmidhuber, 1997] (Image credit:
Cristopher Olah)

h+¥+n°*//deepnlearninc cc ecmit edii/nd¥fc/Hochreit+ter97 lctm ndFf


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

Generative Models of Text

For $"=, m Where L., = 0, hence we can find a closed subset H in H and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=S8Spec(R)=UxxUxxU
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schippy and U — U is the fibre category of S in U in Section, 77 and the fact that
any U affine, see Morphisms, Lemma ?7. Hence we obtain a scheme 5 and any
open subset W C U in Sh((z) such that Spec(R') — S is smooth or an

U= U Ui xs, U;

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Oy . is a scheme where x, 7', s” € § such that Ox ,» — O, _, is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2'/S")
and we win.
To prove study we see that F|y is a covering of A, and T; is an object of Fx/s for
i >0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/F we have to show that

M* =I* @spec(r) Os.s — i F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S){E . (Sch/S) fpps

and

V =I(S.0) — (U,Spec(4))
is an open subset of X. Thus U/ is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. [}

The result for prove any open covering follows from the less of Example 77. It may
replace S by X paces,étate Which gives an open subspace of X and T' equal to Sz,
see Descent, Lemma ?7. Namely, by Lemma ?7 we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim | X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex

Set(A) =T(X, OX-OxJ'

When in this case of to show that Q — Cz'.:x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition 77
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z € X of X where U in X' is proper (some defining as a closed
subset of the unigueness it suffices to check the fact that the following theoremn

(1) f is locally of finite type. Since S = Spec(R) and ¥ = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U/ and a
surjective étale morphism U — X. Let UNU =[[._,  U; be the scheme X over
S at the schemes X; — X and U = lim; X;.

The following lemma surjective restrocomposes of this implies that F,, = F,, =

Lemma 0.2. Let X be a locally Noctherian scheme over S, E = Fyyg. Set I =
T C I Since I" C I™ are nonzero over ig < p is a subset of T, 00 Ay works.

Lemma 0.3. In Situation 77. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (77). On the
other hand, by Lemma 77 we see that
D(Ox) = Ox(D)

where A is an F-algebra where 5,,+1 is a scheme over S. (m]

[Andrej Karpathy 2016]




Some Real life applications of recurrent networks

Voice transcription in phones [Siri, OK Google]
Video Captioning in YouTube
Google Translate

House number transcription from StreetView to Google Maps



Open Source Deep Learning Frameworks

torch http://torch.ch
e Lua API

e Long history

e GPU backend (via cudnn)

e Most control about dynamic execution

e No support for distributed training


http://torch.ch/
http://torch.ch/

Open Source Deep Learning Frameworks

Th edno http://deeplearning.net/software/theano

Python API

University of Montreal project

Fast GPU backend (via cudnn)

Less control over dynamic execution than torch
No support for distributed training


http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/

Open Source Deep Learning Frameworks

?TensorFIOW | https://www.tensorflow.org

Python, C++ APIs

Used and maintained by Google

Fast GPU backend (via cudnn)

Less control over dynamic execution than torch
Support for distributed training now in open source


https://www.tensorflow.org/
https://www.tensorflow.org/

Deep learning for lemma selection

e C(Collaboration between
o Josef Urban’s group
o (Google Research
e Input from the Mizar corpus:
o Set of known lemmas
o Proposition to prove
e Pick small subset of lemmas to give to E Prover



Deep learning for lemma selection

e Simplified goal:
o Rank lemmas by usefulness for a given conjecture
e Embed lemma into R™ using an LSTM
e Embed conjecture into R™ using a different LSTM
e Combine embeddings to estimate usefulness

conjecture > LSTM \

/ FC —~ FC [~ softmax

lemma > LSTM




Thank you!



