Deduction and Induction

A Match Made in Heaven

Stephan Schulz

The Inference Engine

Machine Learning
Deduction and Induction

A Match Made in Heaven or a Deal with the Devil?

Stephan Schulz
Agenda

- Search and choice points in saturating theorem proving
- Basic questions about learning
- Learning from performance data
  - Classification and heuristic selection
  - Parameters for clause selection
- Learning from proofs and search graphs
  - Proof extraction
  - Learning clause evaluations (?)
- Conclusion
Theorem Proving: Big Picture

Real World Problem

Formalized Problem

∀X : human(X) → mortal(X)
∀X : philosopher(X) → human(X)
philosopher(socrates)

? |= mortal(socrates)

Proof
or
Countermodel
or
Timeout

Proof Search

ATP
Contradiction and Saturation

- **Proof by contradiction**
  - Assume negation of conjecture
  - Show that axioms and negated conjecture imply falsity

- **Saturation**
  - Convert problem to Clause Normal Form
  - Systematically enumerate logical consequences of axioms and negated conjecture
  - Goal: Explicit contradiction (empty clause)

- **Redundancy elimination**
  - Use contracting inferences to simplify or eliminate some clauses
Contradiction and Saturation

- **Proof by contradiction**
  - Assume negation of conjecture
  - Show that axioms and negated conjecture imply falsity

- **Saturation**
  - Convert problem to Clause Normal Form
  - Systematically enumerate logical consequences of axioms and negated conjecture
  - Goal: Explicit contradiction (empty clause)

- **Redundancy elimination**
  - Use contracting inferences to simplify or eliminate some clauses

Search control problem: How and in which order do we enumerate consequences?
First-order logic is semi-decidable
- Provers search for proof in infinite space
- ... of possible derivations
- ... of possible consequences

Major choice points of Superposition calculus:
- Term ordering (which terms are bigger)
- (Negative) literal selection
- Selection of clauses for inferences (with the given clause algorithm)
Term Ordering and Literal Selection

- Negative Superposition with selection

\[
\frac{C \lor s \simeq t \quad D \lor u \not\simeq v}{(C \lor D \lor u_{[p \leftarrow t]} \not\simeq v)_{\sigma}}
\]

- if \( \sigma = \text{mgu}(u|_{p}, s) \)
  - and \((s \simeq t)_{\sigma}\) is \(\succ\)-maximal in \((C \lor s \simeq t)_{\sigma}\)
  - and \(s\) is \(\succ\)-maximal in \((s \simeq t)_{\sigma}\)
  - and \(u \simeq v\) is selected in \(D \lor u \not\simeq v\)
  - and \(u\) is \(\succ\)-maximal in \((s \simeq t)_{\sigma}\)

- Choice points:
  - \(\succ\) is a ground-total rewrite ordering
    - Consistent throughout the proof search
    - i.e. in practice determined up-front
  - Any negative literal can be selected
    - Current practice: Fixed scheme picked up-front
The Given-Clause Algorithm

Aim: Move everything from $U$ to $P$

$P$ (processed clauses)

$U$ (unprocessed clauses)

$g = \Box$?
The Given-Clause Algorithm

- **Aim**: Move everything from $U$ to $P$
- **Invariant**: All generating inferences with premises from $P$ have been performed

$g = \square$ ?

Generate

$g$

$P$ (processed clauses)

$U$ (unprocessed clauses)
The Given-Clause Algorithm

Aim: Move everything from $U$ to $P$

> Invariant: All generating inferences with premises from $P$ have been performed

> Invariant: $P$ is interreduced
The Given-Clause Algorithm

- **Aim:** Move everything from $U$ to $P$
- **Invariant:** All generating inferences with premises from $P$ have been performed
- **Invariant:** $P$ is interreduced
- **Clauses added to $U$ are simplified with respect to $P$**
Choice Point Clause Selection

\[ P \]
(processed clauses)

\[ g \]

\[ U \]
(unprocessed clauses)

\[ g = ? \]
Choice Point Clause Selection

- Unprocessed clauses: $U$
- Processed clauses: $P$
- $g = \square$
- Simplifiable?
- Cheap Simplify
- Generate

Diagram illustrating the choice point clause selection process.
Induction for Deduction

Question 1: What to learn from?
- Performance data (prover is a black box)
- Proofs (only final result of search is visible)
- Proof search graphs (most of search is visible)

Question 2: What to learn?
- Here: Learn strategy selection
- Here: Learn parameterization for clause selection heuristics
- Here: Learn new clause evaluation functions
- ...
Definition: A strategy is a collection of all search control parameters

- Term ordering
- Literal selection scheme
- Clause selection heuristic
- . . . (minor parameters)
Definition: A strategy is a collection of all search control parameters

- Term ordering
- Literal selection scheme
- Clause selection heuristic
- ... (minor parameters)

- Observation: Different problems are simple for different strategies
- Question: Can we determine a good heuristic (or set of heuristics) up-front?
- Original: Manually coded automatic modes
  - Based on developer intuition/insight/experience
  - Limited success, high maintenance
- State of the art: Automatic generation of automatic modes
“Learning” Heuristic Selection

TPTP problem library
“Learning” Heuristic Selection

TPTP problem library
“Learning” Heuristic Selection

TPTP problem library

Feature-based classification
“Learning” Heuristic Selection

TPTP problem library

Feature-based classification

Assign strategies to classes based on collected performance data from previous experiments

- Simplest: Always pick best strategy in class
- If no data, pick globally best
“Learning” Heuristic Selection

Feature-based classification

Assign strategies to classes based on collected performance data from previous experiments

- Simplest: Always pick best strategy in class
- If no data, pick globally best

Example features

- Number of clauses
- Arity of symbols
- Unit/Horn/Non-horn
Auto Mode Performance

TPTP 5.6.0 CNF&FOF problems
Feature-based classification

Assign strategies to classes based on collected performance data from previous experiments

- Simplest: Always pick best strategy in class
- If no data, pick globally best

Example features
- Number of clauses
- Arity of symbols
- Unit/Horn/Non-horn
A Caveat

TPTP problem library

Feature-based classification

Assign strategies to classes based on collected performance data from previous experiments

- Simplest: Always pick best strategy in class
- If no data, pick globally best

Example features

- Number of clauses
- Arity of symbols
- Unit/Horn/Non-horn

Features based on developer...

- ...intuition
- ...insight
- ...experience
Current Work: Learning Classification

- Characterize problems by **performance vectors**
  - Which strategy solved the problem how fast?
- Unsupervised clustering of problems based on performance
  - Each cluster contains problems on which the same strategies perform well
- Feature extraction: Try to find characterization of clusters
  - E.g. based on feature set
  - E.g. using nearest-neighbour approaches

My Bachelor Student Ayatallah just started work on this topic - results in 6 months
Learning parameterization for clause selection heuristics
Reminder: Choice Point Clause Selection

Choice Point

$U$ (unprocessed clauses)

$P$ (processed clauses)

$g = \Box$ ?

Generate Simplifiable? Cheap Simplify
Basic Approaches to Clause Selection

- Symbol counting
  - Pick **smallest** clause in $U$
  - $|\{f(X) \neq a, P(a) \neq true, g(Y) = f(a)\}| = 10$

- FIFO
  - Always pick oldest clause in $U$

- Flexible weighting
  - Symbol counting, but give different weight to different symbols
  - E.g. lower weight to symbols from goal!
  - E.g. higher weight for symbols in inference positions

- Combinations
  - Interleave different schemes
Given-Clause Selection in E (1)

- Domain Specific Language (DSL) for clause selection scheme
- Arbitrary number of priority queues
- Each queue ordered by:
  - Unparameterized priority function
  - Parameterized heuristic evaluation function
- Clauses picked using weighted round-robin scheme
  - Example (5 queues):
    (1*ConjectureRelativeSymbolWeight(SimulateSOS, 0.5, 100, 100, 100, 100, 1.5, 1.5, 1), 4*ConjectureRelativeSymbolWeight(ConstPrio, 0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5), 1*FIFOWeight(PreferProcessed), 1*ConjectureRelativeSymbolWeight(PreferNonGoals, 0.5, 100, 100, 100, 100, 1.5, 1.5, 1), 4*Refinedweight(SimulateSOS, 3, 2, 2, 1.5, 2))
Example clause selection heuristic

(1*ConjectureRelativeSymbolWeight(SimulateSOS,
  0.5, 100, 100, 100, 100, 1.5, 1.5, 1),
4*ConjectureRelativeSymbolWeight(ConstPrio,
  0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5),
1*FIFOWeight(PreferProcessed),
1*ConjectureRelativeSymbolWeight(PreferNonGoals,
  0.5, 100, 100, 100, 100, 1.5, 1.5, 1),
4*Refinedweight(SimulateSOS,3,2,2,1.5,2))

Infinitely many possibilities

- Several integer and floating point parameters per evaluation function
- Arbitrary combinations of individual evaluation functions
Example clause selection heuristic

\[
\begin{align*}
(1*\text{ConjectureRelativeSymbolWeight}(\text{SimulateSOS}, &\ 0.5, 100, 100, 100, 100, 1.5, 1.5, 1), \\
4*\text{ConjectureRelativeSymbolWeight}(\text{ConstPrio}, &\ 0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5), \\
1*\text{FIFOWeight}(\text{PreferProcessed}), \\
1*\text{ConjectureRelativeSymbolWeight}(\text{PreferNonGoals}, &\ 0.5, 100, 100, 100, 100, 1.5, 1.5, 1), \\
4*\text{Refinedweight}(\text{SimulateSOS}, &\ 3, 2, 2, 1.5, 2))
\end{align*}
\]

Infinitely many possibilities

- Several integer and floating point parameters per evaluation function
- Arbitrary combinations of individual evaluation functions

How do we find good clause selection heuristics (without relying on developer intuition, insight, experience)?
Genetic Algorithms

- Optimization based on evolving population of individuals
  - Optimization is organized in generations
  - In each generation, individuals compete to reproduce
- Each individual is a candidate solution (i.e. search heuristic)
  - Individuals are assigned a fitness score based on performance
  - More fit individuals are more likely to reproduce into the next generation
- The next generation:
  - Mutation - randomly modify individual
  - Crossover - create new individual from two parents
  - Survivors
Applying Genetic Algorithms to Clause Selection

- **Encoding:** DSL translated into S-Expressions
- **Mutation:** Randomly modify parameters of one heuristic
- **Crossover:**
  - Compose individual by randomly inserting evaluation functions from both parents
  - If the same generic evaluation function occurs in both, randomly exchange parameters
- **Fitness:** How many medium difficulty problems are solved
  - ... on smallish sample set
  - ... with short time limit
- **Selection:** Tournament selection \( (n \approx 5) \)
Evolution in Action

Fitness over generations

Fitness (solved problems)

Generations
(Very) Preliminary Results

- Evolution finds good clause selection heuristics from random initial population
  - Convergence in $\approx 200$ generations
  - Time per generation $\approx 45$ CPU hours
  - $\ldots \approx 40$ minutes on 24 core server
- Best evolved heuristic beats best conventional heuristic
  - Evaluation on 15758 problems from TPTP 6.0.0
  - 30 second time limit, 2.6GHz Intel Xeon machines, enough memory
  - Evolved: 8814 solutions found
  - Manual: 8750 solutions found
  - Unique solutions: 466 evolved vs. 386 manual
Current Work: Diversity Beats Ferocity

- **Idea:** Modify fitness function
  - Problems are prey
  - Individual heuristics are predators
  - If several predators catch the same prey, they have to share the benefit
  - \(\implies\) problems solved by no or few heuristics are more valuable
  - \(\implies\) Force diversity of the ecosystem
Current Work: Diversity Beats Ferocity

- **Idea**: Modify fitness function
  - Problems are prey
  - Individual heuristics are predators
  - If several predators catch the same prey, they have to share the benefit
  - → problems solved by no or few heuristics are more valuable
  - → Force diversity of the ecosystem

My Bachelor Student Ahmed just started work on this topic - results in 6 months
Proof Extraction and Learning
Learning from Proofs and Proof Search Graphs

- Intuition: Previous proof searches are useful to guide new proof attempts
- Naive approach:
  - Clauses in the proof tree are positive examples
  - (All other clauses are negative examples)
- Initial attempts
  - DISCOUNT (Schulz 1995, Schulz&Denzinger 1996) - UEQ, patterns
  - E (Schulz 2000, 2001) - CNF, patterns
  - Overall, modest successes
  - Mostly with positive examples only - compare Otter’s hints
Problems and Solutions

- **Problem: Search protocol size**
  - Initial approach: Store all intermediate steps
  - Bad time and space performance
  - Borderline impossible in 2000, still hard today

- **Problem: Not all examples represent search decisions**
  - Many intermediate results
  - Also: Vastly unbalanced ratio of positive/negative examples

- **Common solution:**
  - Internal proof object (re-)construction
  - Compact representation of the search graph
  - Actually evaluated and picked clauses are recorded
  - Minimal overhead (0.24%) in time
  - Small overhead in memory (due to structure sharing and early discarding of many redundant clauses)
Proof Generation with Limited Archiving

- DISCOUNT loop: Only clauses in \( P \) are used for inferences
  - \( U \) is subject to simplification, but is passive
  - Only clauses in \( P \) need to be available in the proof tree

\[
g = \emptyset \\
\]

\( g \) (Gene-rate)
\( g \rightarrow \) Simplify
\( U \) (unprocessed clauses)
\( P \) (processed clauses)
\( \) Simplicity?
\( g \rightarrow \) Cheap Simplify

\( g \rightarrow \) Generate

Heuristically, newer clauses are larger (and big clauses rarely simplify small clauses)

Solution: Non-destructive backwards-simplification

Clauses in \( P \) are archived on simplification

Simplified new clause is built from fresh copy \( U \) (unprocessed clauses)
Proof Generation with Limited Archiving

- **DISCOUNT loop:** Only clauses in $P$ are used for inferences
  - $U$ is subject to simplification, but is passive
  - Only clauses in $P$ need to be available in the proof tree
- Backward simplification is rare
  - Only clauses in $P$ can be backwards-simplified (and $P$ is small)
  - Heuristically, newer clauses are larger (and big clauses rarely simplify small clauses)
Proof Generation with Limited Archiving

▶ DISCOUNT loop: Only clauses in $P$ are used for inferences
  ▶ $U$ is subject to simplification, but is passive
  ▶ Only clauses in $P$ need to be available in the proof tree
▶ Backward simplification is rare
  ▶ Only clauses in $P$ can be backwards-simplified (and $P$ is small)
  ▶ Heuristically, newer clauses are larger (and big clauses rarely simplify small clauses)
▶ Solution: Non-destructive backwards-simplification
  ▶ Clauses in $P$ are archived on simplification
  ▶ Simplified new clause is build from fresh copy
Proof Generation

\[ \mathcal{P} \quad \text{(processed clauses)} \]

\[ g = \square \quad ? \]

Generate

Simplify

\[ g \]

\[ \mathcal{U} \quad \text{(unprocessed clauses)} \]

Simplify?

Cheap Simplify
Proof Generation

\[ g = \square \]

Generate

Simplify

Cheap Simplify

\[ \mathcal{P} \]
(processed clauses)

\[ \mathcal{U} \]
(unprocessed clauses)

\[ \mathcal{A} \]
(archive)
The Structure of Proofs: Commutative Rings
The Structure of Proofs: Commutative Rings
The Structure of Proofs: Commutative Rings
Classification of Search Decisions

- Proof state at success:
  - All proof clauses are in $P \cup A$
  - Clauses in $U$ never contribute
- All clauses in $P \cup A$ have been selected for processing
  - Positive examples: Proof clauses
  - Negative examples: Non-proof clauses
Classification of Search Decisions

- Proof state at success:
  - All proof clauses are in $P \cup A$
  - Clauses in $U$ never contribute
- All clauses in $P \cup A$ have been selected for processing
  - Positive examples: Proof clauses
  - Negative examples: Non-proof clauses

Idea: Apply Machine Learning
Example: Proof Objects RNG008-7
Example: Proof Objects RNG008-7
Some Initial Results

- Training examples can be cheaply extracted
- Ratio of utilized to useless given clauses (GCU-ratio) is a good predictor of Heuristic performance (Schulz/Möhrmann, IJCAR 2016)
- Positive training examples can be automatically written into a watchlist and used as hints
  - Clauses on the watchlist are preferred over all other clauses
  - First experiments

- Reproving with much better GCU-ratio (and much faster)
- Some improvement even for related problems
Open Questions

- **Abstractions**
  - Are concrete function symbols relevant?
  - Is the concrete term structure relevant?

- **Learning methods**
  - Folding architecture networks?
  - Feature-based numerical methods?
  - Pattern-based learning?
  - Deep learning with convoluted networks?

- **Trade-offs**
  - Power vs. convenience
  - Speed vs. quality
  - Online vs. offline costs
Open Questions

- **Abstractions**
  - Are concrete function symbols relevant?
  - Is the concrete term structure relevant?

- **Learning methods**
  - Folding architecture networks?
  - Feature-based numerical methods?
  - Pattern-based learning?
  - Deep learning with convoluted networks?

- **Trade-offs**
  - Power vs. convenience
  - Speed vs. quality
  - Online vs. offline costs

Work in Progress
(Nearly) The End
Conclusion

- Controlling proof search for theorem provers is a rich application for machine learning techniques.
- Inductive techniques can be applied at several different levels of search control.
- Explicit proofs can be generated efficiently.
  - ... and mined for training examples!
- Proofs are beautiful and informative.
  - Learning from proofs may be the future.
Conclusion

- Controlling proof search for theorem provers is a rich application for machine learning techniques
- Inductive techniques can be applied at several different levels of search control
- Explicit proofs can be generated efficiently
  - . . . and mined for training examples!
- Proofs are beautiful and informative
  - Learning from proofs may be the future

Thank you!
Questions?