
Machine learning for automated theorem proving: the story so far

Sean Holden

University of Cambridge

Computer Laboratory

William Gates Building

15 JJ Thomson Avenue

Cambridge CB3 0FD, UK

sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/∼sbh11

1

Machine learning: what is it?

EVIL ROBOT...

2

Machine learning: what is it?

EVIL ROBOT...

...hates kittens!!!

3

Machine learning: what is it?

4

Machine learning: what is it?

5

Machine learning: what is it?

6

Machine learning: what is it?

7

Machine learning: what is it?

8

Machine learning: what is it?

I have d features allowing me to make vectors x = (x1, . . . , xd) describing in-

stances.

I have a set of m labelled examples

s = ((x1, y1), . . . (xm, ym))

where usually y is either real (regression) or one of a finite number of categories

(classification).

s

Learning

x y

algorithm

h

I want to infer a function h that can predict the values for y given x on all in-

stances, not just the ones in s.

9

Machine learning: what is it?

There are a couple of things missing:

.

s

x y

Learning

h

optimization

Parameter algorithm

Generally we need to optimize some parameters associated with the learning al-

gorithm.

10

Machine learning: what is it?

There are a couple of things missing:

.

s

Parameter

y

Learning

algorithm

h

BLOOD, SWEAT

AND TEARS!!!
optimization

x

Generally we need to optimize some parameters associated with the learning al-

gorithm.

Also, the process is far from automatic...

11

Machine learning: what is it?

So with respect to theorem proving, the key questions have been:

1. What specific problem do you want to solve?

2. What are the features?

3. How do you get the training data?

4. What machine learning method do you use?

As far as the last question is concerned:

1. It’s been known for a long time that you don’t necessarily need a complicated

method. (Reference: Robert C Holt, “Very simple classification rules perform

well on most commonly used datasets”, Machine Learning, 1993.)

2. The chances are that a support vector machine (SVM) is a good bet. (Refer-

ence: Fernández-Delgado et al., “Do we need hundreds of classifiers to solve

real world classification problems?”, Journal of Machine Learning Research,

2014.)

12

Three examples of machine learning for theorem proving

In this talk we look at three representative examples of how machine learning has

been applied to automatic theorem proving (ATP):

1. Machine learning for solving boolean satisfiability SAT problems by selecting

an algorithm from a portfolio.

2. Machine learning for proving theorems in first-order logic (FOL) by selecting

a good heuristic.

3. Machine learning for selecting good axioms in the context of an interactive

proof assistant.

In each case I present the underlying problem, and a brief description of the ma-

chine learning method used.

13

Machine learning for SAT

Given a Boolean formula, decide whether it is satisfiable.

There is no single “best” SAT-solver.

Basic machine learning approach:

1. Derive a standard set of features that can be used to describe any formula.

2. Apply a collection of solvers (the portfolio) to some training set of formulas.

3. The running time of a solver provides the label y.

4. For each solver, train a classifier to predict the running time of an algorithm

for a particular instance.

This is known as an empirical hardness model.

Reference: Lin Xu et al, “SATzilla: Portfolio-based algorithm selection for SAT”,

Journal of Artificial Intelligence Research, 2008. (Actually more complex and

uses a hierarchical model.)

14

Machine learning for SAT

Solver 1

Solver 2

h1

h2

hk

SAT

New instance

problems

p1, p2, . . . , pn

Feature

vectors

x1,x2, . . . ,xn

Training set

s1

Training set

s2

Training set

sk
Solver k

x

Feature vector

Predict best solver

to try

15

Machine learning for SAT

The approach employed 48 features, including for example:

1. The number of clauses.

2. The number of variables.

3. The mean ratio of positive and negative literals in a clause.

4. The mean, minimum, maximum and entropy of the ratio of positive and nega-

tive occurences of a variable.

5. The number of DPLL unit propagations computed at various depths.

6. And so on...

16

Linear regression

I have d features allowing me to make vectors x = (x1, . . . , xd).

I have a set of m labelled examples

s = ((x1, y1), . . . (xm, ym)).

I want a function h that can predict the values for y given x.

In the simplest scenario I use

h(x;w) = w0 +
d

∑

i=1

wixi.

and choose the weights wi to minimize

E(w) =
m
∑

i=1

(h(xi;w)− yi)
2.

This is linear regression.

17

Ridge regression

This can be problematic: the function h is linear, and computing w can be numer-

ically problematic.

Instead introduce basis functions φi and use

h(x;w) =

d
∑

i=1

wiφi(x)

minimizing

E(w) =

m
∑

i=1

(h(xi;w)− yi)
2 + λ||w||2

This is ridge regression. The optimum w is

wopt =
(

ΦTΦ + λI
)−1

ΦTy

where Φi,j = φj(xi).

Example: in SATzilla, we have linear basis functions φi(x) = xi and quadratic

basis functions φi,j(x) = xixj.

18

Mapping to a bigger space

Mapping to a different space to introduce nonlinearity is a common trick:

...corresponds to a nonlinear

division of this space.
A plane dividing

the groups in this space...

x1

x2

φ1(x) = x1

φ2(x) = x2

Φ

φ3(x) = x1x2

We will see this again later...

19

Machine learning for first-order logic

Am I AN UNDESIRABLE?

∀x . Pierced(x) ∧ Male(x) −→ Undesirable(x)

Pierced(sean)

Male(sean)

Does Undesirable(sean) follow?

The set of clauses grows

There is a choice of which pair of clauses to resolve

x = sean

{U(sean)}

{¬M(sean), U(sean)}

{¬P(x),¬M(x), U(x)} {P(sean)} {¬U(sean)}{M(sean)}

{}

Oh dear...

20

Machine learning for first-order logic

The procedure has some similarities with the portfolio SAT solvers:

However this time we have a single theorem prover and learn to choose a heuristic:

1. Convert any set of axioms along with a conjecture into (up to) 53 features.

2. Train using a library of problems.

3. For each problem in the library, run the prover with each available heuristic.

4. This produces a training set for each heuristic. Labels are whether or not the

relevant heuristic is the best (fastest).

We then train a classifier per heuristic.

New problems are solved using the predicted best heuristic.

Reference: James P Bridge, Sean B Holden and Lawrence C Paulson, “Machine

learning for first-order theorem proving: learning to select a good heuristic”, Jour-

nal of Automated Reasoning, 2014.

21

Machine learning for first-order logic

To select a heuristic for a new problem:

Classifiers: SVM
or

Gaussian process

x

Conjecture Select the

best

heuristic

Clauses

to size of processed set

+

axioms

h0

No heuristic

h5

Heuristic 5

is best

h1

Heuristic 1

is best

x1

Fraction of

unit clauses

x2

Fraction of

Horn clauses

x53

Ratio of paramodulations

We can also decline to attempt a proof .

22

The support vector machine (SVM)

An SVM is essentially a linear classifier in a new space produced by Φ, as we

saw before:

ξ

there are many ways

of dividing the classes

SVM: choose the possibility

that is as far as possible

from both classes

ξ

Linear classifier:

BUT the decision line is chosen in a specific way: we maximize the margin.

23

The support vector machine (SVM)

How do we train an SVM?

1. As previously, the basic function of interest is

h(x) = wTΦ(x) + b

and we classify new examples as

y = sgn(h(x)).

2. The margin for the ith example (xi, yi) is

M(xi) = yih(xi).

3. We therefore want to solve

argmax
w,b

[

min
i

yih(xi)
]

.

That doesn’t look straightforward...

24

The support vector machine (SVM)

Equivalently however:

1. Formulate as a constrained optimization

argmin
w,b

||w||2 such that yih(xi) ≥ 1 for i = 1, . . . , m.

2. We have a quadratic optimization with linear constraints so standard methods

apply.

3. It turns out that the solution has the form

wopt =
m
∑

i=1

yiαiΦ(xi)

where the αi are Lagrange multipliers.

4. So we end up with

y = sgn

[

m
∑

i=1

yiαiΦ
T (xi)Φ(x) + b

]

.

25

The support vector machine (SVM)

It turns our that the inner product ΦT (x1)Φ(x2) is fundamental to SVMs:

1. A kernel K is a function that directly computes the inner product

K(x1,x2) = ΦT (x1)Φ(x2).

2. A kernel may do this without explicitly computing the sum implied.

3. Mercer’s theorem characterises the K for which there exists a corresponding

function Φ.

4. We generally deal with K directly. For example the radial basis function

kernel.

K(x1,x2) = exp

(

−
1

2σ2
||x1 − x2||

2

)

Various other refinements let us handle, for example, problems that are not linearly

separable.

26

Machine learning for interactive proof assistants

Interactive theorem provers such as Isabelle and Mizar can employ ATPs:

1. Problems can be translated to first-order and handed on to an ATP.

2. However this can generate large, hard problems.

3. We want to insure that only relevant premises are supplied to an ATP.

Reference: Jesse Alama et al., “Premise selection for mathematics by corpus

analysis and kernel methods”, Journal of Automated Reasoning, 2014.

27

Machine learning for interactive proof assistants

Starting with the Mizar mathematical library (MML), construct the graph of proof

dependencies:

MML

↓

Set Γ of FOL formulae

↓

Matrix D =









1 0 0 0 · · · 0
1 1 0 1 · · · 0
...

1 0 0 0 · · · 1









where the dependency matrix D is defined as

Dc,a =

{

1 if axiom a is used to prove conjecture c

0 otherwise
.

28

Machine learning for interactive proof assistants

Next, represent every formula in Γ using its symbols and subterms.

Set {t1, t2, . . . , tn} of symbols/subterms

↓

Matrix S =









0 0 1 1 · · · 0
1 1 0 0 · · · 1
...

1 1 1 0 · · · 1









where the subterm matrix S is defined as

Sc,i =

{

1 if symbol/subterm i appears in c

0 otherwise
.

The features for a conjecture c are just the corresponding row of S.

29

Machine learning for interactive proof assistants

The approach works as follows:

1. For every axiom a ∈ Γ train a classifier

ha(c) : Γ → R

that provides an indication of how useful a is for proving c.

2. One way to do this is to construct for each axiom a a model

ha(c) = Pr(a is used to prove c|symbols/subterms in c).

3. Conditional probabilities like this lead us into the domain of Bayes-optimal

classifiers.

The method is mostly concerned with a form of kernel classifier.

However in the interest of a varied presentation we introduce a simple form of

Bayesian classification.

30

Naı̈ve Bayes

The naı̈ve Bayes classifier is simple:

1. Choose the class maximizing

Pr(C|x) =
1

Z
Pr(x|C) Pr(C).

2. We assume that features are conditionally independent given the class. So

h(x) = argmax
C

Pr(C)
d
∏

i=1

Pr(xi|C).

3. The probabilities are easily estimated from the training data.

4. In this application we want to rank the possible axioms. This is easy: the

closer h(x) is to 1 the more useful we expect it to be.

Point 2 is a very strong assumption but the algorithm can often work surprisingly

well.

31

Machine learning for interactive proof assistants

Rank the axioms

and submit

the top scorers

FOL

hpk({c1, . . . , cm})

conjecture

c

Symbols/subterms

{c1, . . . , cm}

Classifiers hp for

each p ∈ Γ

S

D

Mizar Mathematical

Library

(MML)

FOL formulae

Γ

hp1({c1, . . . , cm})

hp2({c1, . . . , cm}

32

