
Probabilistic Parsing of
Mathematics

Cezary Kaliszyk

University of Innsbruck,

Austria

Jiří Vyskočil Josef Urban

Czech Technical University in Prague,

Czech Republic

Outline

• Why and why not current formal proof assistants

• Aligned corpora as a resource for learning to formalize

• Overview of parsing methods

• Problems with PCFG and the CYK algorithm

• Experiments with Informalized Flyspeck

• Parsing and Typechecking over Flyspeck

• Future Work

Why (and why not) proof assistants?

+ Remarkable success

+ “...fully certified world...”
+ Towards Self-verification of HOL Light [Harrison 2006]
+ A Formally Verified Compiler Back-end [Leroy 2009]
+ and some more…

+ “...impressive mathematics...”
+ The Four Colour Theorem: Engineering of a Formal Proof [Gonthier 2007]
+ Engineering mathematics: the odd order theorem proof [Gonthier 2013]
+ A formal proof of the Kepler conjecture [Hales+ 2015]

- “…not for mathematicians…” [Wiedijk 2007]

- “...nontrivial to learn...”

- syntax, foundations, tactics

- “...work...”

- search, level of detail, automation

Why (and why not) proof assistants?

• But humans have learned how to do this “work”!

• Can someone do this for us?

• Can a computer do this for us?

• This is what we are trying in this project

• Try to automate the translation from informal to formal!

• In particular, try to learn such translation from aligned
informal/formal corpora

Learn parsing on big corpora: which ones?

• Dense Sphere Packings: A Blueprint for Formal Proofs [Hales 2013]
• 400 theorems and 200 concepts mapped

• IsaFoR [Sternagel, Thiemann 2014]
• most of “Term Rewriting and All That” [Bader, Nipkow 1998]

• Compendium of Continuous Lattices (CCL) [Gierz at al. 1980]
• 60% formalized in Mizar [Bancerek, Rudnicki 2002]
• high-level concepts and theorems aligned

• Feit-Thompson theorem (two books)
• formalized by Gonthier [Gonthier 2013] (two books)

• ProofWiki with detailed proofs and symbol linking

• General topology correspondence with Mizar

• Similar projects (PlanetMath, ...)

Traditional parsing approach:

• a language is designed manually in such a
way that:
• lexical tokens can be fully specified by some

regular language

• syntax analyzer can be fully specified by
some unambiguous context free grammar
(typically by deterministic CFG)

• semantic analyzer typically resolves types of
symbols and subtrees in a parsing tree,
checks semantic correctness of binders, ….

lexical analysis

formal text input

fully specified data structure
for further processing

semantic analysis

syntax analysis

Linguistic parsing approach:

lexical analysis

informal text input

semantic analysis

syntax analysis

several possible
solutions sorted by
their probability

• all of these phases (or at least some of them) can be
learned (instead of encoding them manually) from
examples by machine learning

• syntax (and mostly even semantic) analysis can be
done by ambiguous CFG with probabilities (PCFG) and
lexical analysis (in case of English) is often simple

• examples for learning have same (or similar) structure
as parsing trees and they are called treebanks in this
domain.

• rules and probabilities can be learned from treebanks

• CYK or Early parser can be used for parsing such PCFG

Comparison of
Traditional parsing X Linguistic parsing

• have strong semantics

• it is fast due to deterministic algs

• it can be hardly learn by machine

• has only one correct solution

• does not have (or weak) semantics

statistical methods are used instead

• It is relatively slow (cubic time)

• can be learned by machine

• has many possible solutions

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

NP

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

NP VP, V

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

NP VP, V Det

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

NP VP, V Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

NP VP, V Det N P

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

NP VP, V Det N P Det

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

VP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

VP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

VP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

VP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

VP PP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

VP PP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S

VP PP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S

VP PP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S

VP PP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

VP

S

VP PP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

CYK (CKY) algorithm for accepting sentence by CNF grammar

Example:

S -> NP VP
VP -> VP PP
VP -> V NP
VP -> eats
PP -> P NP
NP -> Det N
NP -> she
V -> eats
P -> with
N -> fish
N -> fork
Det -> a

S

VP

S

VP PP

S NP NP

NP VP, V Det N P Det N

she eats a fish with a fork

Toolchain
overview:

linguistic tool

informal sentence

formal theorem
HOL, Mizar, …

prover

several possible
translations
(formal hypothesis)

Toolchain
overview:

linguistic tool

informal sentence

formal theorem
HOL, Mizar, …

prover

several possible
translations
(formal hypothesis)

probabilistic
context-free
grammar

knowledge base
obtained by
machine learning

Experiments with Informalized Flyspeck

• Instead of using “real” informal mathematical text we obtain training
parse trees from informalized theorem statements of Flyspeck project.

• 22000 Flyspeck theorem statements informalized:
• 72 overloaded instances like “+” for vector_add
• 108 infix operators
• all “prefixes” are forgotten

• real_, int_, vector_, nadd_, hreal_, matrix_, complex_

• ccos, cexp, clog, csin, ...

• vsum, rpow, nsum, list_sum, ...

• all brackets, type annotations, and casting functors are deleted
• Cx and real_of_num (which alone is used 17152 times)

• online parsing/proving demo system:
http://colo12-c703.uibk.ac.at/hh/parse.html

Statistical Parsing of Informalized HOL

1) Training and testing examples are exported form Flyspeck formulas

Example:

REAL_NEGNEG: !x . -- -- x = x

Statistical Parsing of Informalized HOL

1) Training and testing examples are exported form Flyspeck formulae

Example:

REAL_NEGNEG: !x . -- -- x = x

HOL Light lambda calculus internal term structure:

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))

(Tyapp " bool "))) (Abs "A0" (Tyapp " real ") (Comb (Comb (Const "=" (Tyapp " fun "

(Tyapp " real ") (Tyapp " fun " (Tyapp " real ") (Tyapp " bool ")))) (Comb (Const

" real_neg " (Tyapp " fun " (Tyapp " real ") (Tyapp " real "))) (Comb (Const

" real_neg " (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp

" real "))))) (Var "A0" (Tyapp " real ")))))

Statistical Parsing of Informalized HOL

1) Training and testing examples are exported form Flyspeck formulae

Example:

Statistical Parsing of Informalized HOL

2) Conversion into a Grammar Tree
• Terminals exactly compose textual form

• Annotate each (nonterminal) symbol with its HOL type

• Also “semantic (formal)” nonterminals annotate
overloaded terminals

Example:
("(Type bool)" ! ("(Type (fun real bool))" (Abs ("(Type real)"

(Var A0)) ("(Type bool)" ("(Type real)" ($# real_neg --) ("(Type

real)" ($# real_neg --) ("(Type real)" (Var A0)))) ($#= =)

("(Type real)" (Var A0))))))

Corresponding textual form: ! A0 -- -- A0 = A0

Statistical Parsing of Informalized HOL
3) Induce PCFG (Probabilistic Context-Free

Grammar) from the trees
• Grammar rules are obtained from the inner nodes of

each grammar tree

Example:

"(Type bool)" → ! "(Type(fun real bool))ò

"(Type(fun real bool))" → Abs

Abs → "(Type real)ò "(Type bool)ò

"(Type real)ò → Var

"(Type real)ò → $#real_neg "(Type real)ò

Var → A0

"(Type bool)ò → "(Type real)ò $#= "(Type real)ò

$#real_neg → --

$#= → =

Statistical Parsing of Informalized HOL

Example: freq: prob:
"(Type bool)" → ! "(Type(fun real bool))ò1 1/2

"(Type(fun real bool))" → Abs 1 1

Abs → "(Type real)ò "(Type bool)ò1 1

"(Type real)ò → Var 3 3/5

"(Type real)ò → $#real_neg "(Type real)ò 2 2/5

Var → A0 3 1

"(Type bool)ò → "(Type real)ò $#= "(Type real)ò1 1/2

$#real_neg → -- 2 1

$#= → = 1 1

3) Induce PCFG (Probabilistic Context-Free Grammar) from the trees
• Grammar rules are obtained from the inner nodes of each grammar tree

• Probabilities are computed from the frequencies

Example: freq: prob:
"(Type bool)" → ! "(Type(fun real bool))ò1 1/2

"(Type(fun real bool))" → Abs 1 1

Abs → "(Type real)ò "(Type bool)ò1 1

"(Type real)ò → Var 3 3/5

"(Type real)ò → $#real_neg "(Type real)ò 2 2/5

Var → A0 3 1

"(Type bool)ò → N1 "(Type real)ò 1 1/2

N1 → "(Type real)ò $#= 1 1

$#real_neg → -- 2 1

$#= → = 1 1

Statistical Parsing of Informalized HOL
3) Induce PCFG (Probabilistic Context-Free Grammar) from the trees

• Grammar rules are obtained from the inner nodes of each grammar tree

• Probabilities are computed from the frequencies

• Grammar rules are binarized for efficient parsing (by CYK algorithm)

(around 20K grammar rules in Flyspeck case)

Statistical Parsing of Informalized HOL

4) The learning part is done

• Rules probabilities can be further tuned for even better parsing results
(Inside-Outside algorithm)

• Binarization should be designed with respect to possible reconstruction of
original grammar trees

Statistical Parsing of Informalized HOL

4) Now, CYK dynamic-programming algorithm can be used for
parsing ambiguous sentences

input:
• sentence – a sequence of words

• learned binarized PCFG

output:
• N - most probable parse trees

where N is a parameter of CYK algorithm that can significantly affect the
time complexity of parsing process

• It is not possible to guarantee
same type of same variables on
different positions

• It is not possible to correctly
handle types of lambda
abstractions

• Above simple semantic pruning
affects the parsing a lot!

Example:

Problems with PCFG and CYK algorithm

Problems with PCFG and CYK algorithm

Example:

input sentence: 1 * x + 2 * x .

correct parsing tree:
(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

derived grammar rules:
S -> Num .
Num -> Num + Num
Num -> Num * Num
Num -> 1
Num -> 2
Num -> x

• Standard PCFG cannot handle any context of grammar rules.
This effect can be seen on priorities of operators and type prediction of
overloaded symbols.

Problems with PCFG and CYK algorithm

• Standard PCFG cannot handle any context of grammar rules.
This effect can be seen on priorities of operators and type prediction of
overloaded symbols.

Example:

all possible parses according to the grammar:

1) (S (Num (Num 1) * (Num (Num (Num x) + (Num 2)) * (Num x))) .)

2) (S (Num (Num 1) * (Num (Num x) + (Num (Num 2) * (Num x)))) .)

3) (S (Num (Num (Num 1) * (Num (Num x) + (Num 2))) * (Num x)) .)

4) (S (Num (Num (Num (Num 1) * (Num x)) + (Num 2)) * (Num x)) .)

5) (S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

probability of every parsed term is same =

p(S - > Num .) · p(Num - > Num + Num) · p(Num - > Num * Num) · p(Num - > Num * Num)
· p(Num - > 1) · p(Num - > 2) · p(Num - > x) · p(Num - > x)

Example:

S -> Num .
Num -> Num + Num
Num -> Num * Num
Num -> 1
Num -> 2
Num -> x
S -> (Num Num + Num) .
Num -> (Num Num * Num) + (Num Num * Num)
Num -> (Num 1) * (Num x)
Num -> (Num 2) * (Num x)

Problems with PCFG and CYK algorithm

• Standard PCFG cannot handle any context of grammar rules.
This effect can be seen on priorities of operators and type prediction of
overloaded symbols.

subtree extension rules

Example:
The best (the most probable) parse according to the new grammar:

(S (Num (Num (Num 1) * (Num x)) + (Num (Num 2) * (Num x))) .)

Probability of the best parse =
p(Num - > (Num 1) * (Num x)) · p(Num - > (Num 2) * (Num x))
· p(Num - > (Num Num * Num) + (Num Num * Num))
· p(S - > Num .))

Problems with PCFG and CYK algorithm

• Standard PCFG cannot handle any context of grammar rules.
This effect can be seen on priorities of operators and type prediction of
overloaded symbols.

Parsing and Type-checking over Flyspeck
(without subtrees PCFG extension)

• 698,549 of the parse trees typecheck (221,145 do not)

• 302,329 distinct (modulo alpha) HOL formulae

• For each HOL formula we try to prove it with a single AI-ATP method

• 70,957 (23%) can be automatically proved (but a significant part of
them are not interesting because of wrong parenthesation)

• In 39.4% of the 22,000 Flyspeck sentences the correct (training)
HOL parse tree is among the best 20 parses

• its average rank: 9.3

Parsing and Type-checking over Flyspeck
(with subtrees PCFG extension)

• combination of subtrees with depths from 4 to 8

• 70,957 (23%) ? can be automatically proved

• In 39.4% 75.7% of the 22,000 Flyspeck sentences the correct
(training) HOL parse tree is among the best 20 parses

• its average rank: 9.3 1.9

Future Work

• More corpora -> more alignments -> more knowledge -> …
• Smarter parsing methods

different shapes of subtrees
better matching patterns
neural networks instead of subtrees (or instead of the whole parser)

• Tighter integration of probabilistic parsing with semantic pruning
• Incremental self-learning system:

train on some data →parse →typecheck/prove the parses ...
... and thus get more data to train on →loop ...

• Implement backtracking into parsing process
in case there is a point without any provable parse

• integrate into AI/ATP self-improving systems (MaLARea, BliStr, ...)

