When Should We Add Theory Axioms And Which Ones?

Giles Reger¹, Martin Suda^{$1 \rightarrow 2$}

¹School of Computer Science, University of Manchester, UK

²Institute for Information Systems, TU Vienna, Austria

AITP, April 4, 2016

Outline

Reger, Suda

When Should We Add Theory Axioms And Which Ones?

MANCHESTER

▲口> ▲圖> ▲屋> ▲屋>

2 / 23

Outline

Vampire

- Automated theorem prover for first-order logic (+)
- Regular winner of various divisions in the CACS competition
- Notoriously hard to obtain

Outline

Vampire

- Automated theorem prover for first-order logic (+)
- Regular winner of various divisions in the CACS competition
- Notoriously hard to obtain

Machine learning

- How to select theory axioms
- Our current machine learning playground
- Work in progress report

Vampire and the CASC competition

When Should We Add Theory Axioms And Which Ones?

< 🗗 🕨

CASC 2015 results¹

Higher-order	Satallax	LEO-II	Satallax -	Isabelle								
Theorems	2.8	1.6.2	13	2015								
Solved/400	271.400	195/400	285/400	267/400								
Av. CPU Time	14.96	12.25	21.67	61.02								
Solutions	268.400	191.400	0/400	0/400								
Higher-order Non- theorems	Nitpick 2015	Refute	Satallax 28									
Solved/200	200/200	74/200	49/200									
Av. CPU Time	7.92	24.34	0.05									
Typed First-order Theorems +*-/	VampireZ	CVC4 TFA-1.5	Vampire	Beagle	SPASS+T	ZenonAri 0.1.0	Princess 20150706	CVC4				
Solved/200	172/200	163/200	160/200	131/200	108/200	60/200	143/200	131/200				
Av. CPU Time	11.85	17.27	10.75	21.76	10.04	2.86	17.38	10.67				
Solutions	172/200	163/200	160/200	131/200	108/200	60/200	0/200	0/200				
Typed First-order Non-theorems +*-/	CVC4 TFN-15	Princess 20150706	Beagle									
Solved/20	10/20	6/20	6/20									
Av. CPU Time	0.00	0.97	1.33									
First-order	Vampire	Vampire	E	ET	CVC4	iProver	leanCoP	iProverM	Prover9	Dringoor	Muscadet	Geo-III
Theorems	4.0	2.6	1.9.1	0.2	FOF-1.5	2.0	2.2	0.7-0.3	1109a	1.0	4.5	2015E
Theorems Solved/400	4.0 380.400	2.6 371/400	1.9.1 316/400	0.2 303/400	FOF-1.5 257/400	2.0 222/400	2.2 159/400	0.7-0.3 127/400	1109a 111.400	1.0 113.400	45 37/400	2015E 37/400
Theorems Solved/400 Av. CPU Time	4.0 380,400 12.20	2.6 371,400 14.86	1.9.1 316:400 20.18	0.2 303/400 20.96	F0F-15 257/400 33.40	2.0 222,400 21.12	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved/400 Av. CPU Time Solutions	4.0 380.400	2.6 371,400 14.86 368,400	19.1 316:400 20.18 316:400	0.2 303/400 20.96 303/400	FOF-15 257/400 33.40 256/400	2.0 222/400	2.2 159/400	0.7-0.3 127/400	1109a 111.400	1.0 113.400	45 37/400	2015E 37/400
Theorems Solved:400 Av. CPU Time Solutions First-order Non-	4.0 380.400 12.20 374.400 Vampire	2.8 371,400 14.86 368,400 iProver	19.1 316:400 20.18 316:400 <i>iProver</i>	0.2 303/400 20.96 303/400 CVC4	FOF-15 257/400 33.40 256/400 E	2.0 222,400 21.12 217,400 Geo-III	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved/400 Av. CPU Time Solutions First-order Non- theorems	40 380,400 12.20 374,400 Vampire SAT-40	28 371,400 14.86 368,400 iProver SAT-2.0	19.1 316/400 20.18 316/400 <u>iProver</u> SAT-L0	0.2 303/400 20.96 303/400 <u>CVC4</u> FNT-1.5	FOF-15 257/400 33.40 256/400 <u>E</u> FNT-19.1	2.0 222,400 21.12 217,400 Geo-III 2015E	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved:400 Av. CPU Time Solutions First-order Non- theorems Solved:200	40 380,400 12.20 374,400 <u>Vampire</u> 8AT-4.0 195,200	28 371,400 14.86 368,400 iProver 8AT-20 163/200	19.1 316:000 20.18 316:000 <u>iProver</u> sar-10 134:200	0.2 303/400 20.96 303/400 <u>CVC4</u> FNT-1.5 71/200	FOF-15 257/400 33.40 256/400 <u>E</u> FNT-1.9.1 51/200	2.0 222/400 21.12 217/400 <u>Geo-III</u> 2015E 38/200	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved/400 Av. CPU Time Solutions First-order Non- theorems	40 380,400 12.20 374,400 Vampire SAT-40 195/200 38.95	28 371,400 14.86 368,400 iProver SAT-2.0	19.1 316/400 20.18 316/400 <u>iProver</u> SAT-L0	0.2 303/400 20.96 303/400 <u>CVC4</u> FNT-1.5	FOF-15 257/400 33.40 256/400 <u>E</u> FNT-19.1	2.0 222,400 21.12 217,400 Geo-III 2015E 38/200 21.89	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved.400 Av. CPU Time Solutions First-order Non- theorems Solved.200 Av. CPU Time Solutions	40 380,400 12,20 374,400 Vampire 8AT-40 1957200 38,95 1957200	28 371400 14.86 368400 Ргочег 8лт-2л 1637200 44.11 1637200	19.1 316:400 20.18 316:400 <u>iProver</u> <u>SAT-1.0</u> 134:200 79.93 134:200	0.2 303/400 20.96 303/400 <u>CVC4</u> FNT-1.5 71/200 57.78 71/200	FOF-1.5 257/400 33.40 256/400 E FNT-1.9.1 51/200 9.62 51/200	2.0 222/400 21.12 217/400 <u>Geo-III</u> 2015E 38/200	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved400 Av. CPU Time Solutions First-order Non- theorems Solved200 Av. CPU Time Solutions Effectively Propositional CNF	4.0 380.400 12.20 374.400 <u>Vampire</u> 8лт-4.0 1957200 38.95 1957200 <u>Vampire</u> 4.0	28 371400 14.86 368400 iProver 8AT-2.9 1637200 44.11 1637200 iProver 0.9	19.1 316:000 20.18 316:000 iProver SAT-1.0 134:000 79.93 134:000 iProver 2.0	0.2 303/400 20.96 303/400 <u>CVC4</u> FNT-1.5 71/200 57.78 71/200 <u>E</u> 1.5.1	FOF-15 257/400 33.40 256/400 E FNT-1.9.1 51/200 9.62 51/200 <u>Geo-III</u> 2015E	2.0 222,400 21.12 217,400 Geo-III 2015E 38/200 21.89	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved.400 Av. CPU Time Solutions First-order Non- theorems Solved.200 Av. CPU Time Solutions Effectively	40 380.400 12.20 374.400 Vampire 8АТ-40 1957200 38.95 1957200 Vampire 40 1922200	26 371,400 14,86 368,400 <u>Prover</u> 8AT-2.0 163,200 44,11 163,200 iProver 99 161,200	19.1 316:00 20.18 316:00 <i>iProver</i> 847-1.0 134:200 79.93 134:200 iProver	0.2 303/400 20.96 303/400 ENT-15 71/200 57.78 71/200 E	FOF-15 257/400 33.40 256/400 E FNT-1.9.1 51/200 9.62 51/200 Geo-III	2.0 222,400 21.12 217,400 Geo-III 2015E 38/200 21.89	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved400 Av. CPU Time Solutions First-order Non- theorems Solved200 Av. CPU Time Solutions Effectively Propositional CNF	4.0 380.400 12.20 374.400 <u>Vampire</u> 8лт-4.0 1957200 38.95 1957200 <u>Vampire</u> 4.0	28 371400 14.86 368400 iProver 8AT-2.9 1637200 44.11 1637200 iProver 0.9	19.1 316:000 20.18 316:000 iProver SAT-1.0 134:000 79.93 134:000 iProver 2.0	0.2 303/400 20.96 303/400 <u>CVC4</u> FNT-1.5 71/200 57.78 71/200 <u>E</u> 1.5.1	FOF-15 257/400 33.40 256/400 E FNT-1.9.1 51/200 9.62 51/200 <u>Geo-III</u> 2015E	2.0 222,400 21.12 217,400 Geo-III 2015E 38/200 21.89	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved:400 Av. CPU Time Solutions First-order Non- theorems Solved:200 Av. CPU Time Solutions Effectively Propositional CNF Solved:200 Av. CPU Time Large Theory Batch	43 380.400 12.20 374.400 8xT-49 195.200 38.95 195.200 Vampire 40 192.200 27.61 Vampire	26 371,400 14.86 368,400 Prover 8AT-20 163,200 44,11 163,200 Prover 09 09 161,200 27,91 MaLARe:	13.1 316.400 20.18 316.400 <i>iProver</i> 5A7-10 134.200 134.200 iProver 20 153.200 36.57 E	0.2 303/400 20.96 303/400 CVC4 FNT-1.5 71/200 57.78 71/200 57.78 71/200 E 1.9.1 1.01/200 11.09 iProver	FOF-1.5 257/400 33.40 256/400 E FNT-1.9.1 51/200 9.62 51/200 9.62 51/200 9.62 9.62 9.62 9.62 9.62	2.0 222,400 21.12 217,400 Geo-III 2015E 38/200 21.89	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved.400 Av. CPU Time Solutions First-order Non- theorems Solved.200 Av. CPU Time Solutions Effectively Propositional CNF Solved.200 Av. CPU Time Large Theory Batch Problems	43 380.400 12.20 374.400 Vampire 8AT-49 195.200 38.95 195.200 Vampire 40 192.200 27.61 Vampire 40 192.200	26 371:400 14.86 368:400 Prover 8AT-20 163:200 444.11 163:200 Prover 0.9 161:200 27.91 61:200 27.91	13.1 316:00 20.18 316:00 <i>iProver</i> 547-10 134:00 79.93 134:00 iProver 29 153:00 36.57 E 1.9.1-LTB	0.2 303/400 20.96 303/400 CVC4 FNT-15 71/200 57.78 71/200 E 1.9.1 101/200 11.09 Prover 2.0-178	FOF-1.5 257/400 33.40 256/400 E FNT-1.9.1 51/200 9.62 51/200 9.62 51/200 9.62 9.62 9.62 9.62 9.62	2.0 222,400 21.12 217,400 Geo-III 2015E 38/200 21.89	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved 4ao Av. CPU Time Solutions First-order Non- theorems Solved 2ao Av. CPU Time Solutions Effectively Propositional CNF Solved 2ao Av. CPU Time Large Theory Batch Problems Solved 1ao	48 380.400 12.20 374400 <u>Vampire</u> 8xт-40 195.200 38.95 195.200 Vampire 40 192.200 27.61 Vampire 40-1тв 1208.100	26 371,400 14.86 368,400 Prover 8,87-39 163,700 44,11 163,700 44,11 163,700 44,11 163,700 44,11 163,700 49 161,709 27,91 Mai Are 9,8 837,700	13.1 316.400 20.18 316.400 Prover 587-18 134.200 Prover 28 153.400 Prover 28 153.500 36.57 E 13.1-17B 799.1000	е 2 303.400 20.96 303.400 СVC4 РNT-1 <i>s</i> 71.200 57.78 71.200 101.200 11.09 11.09 11.09 11.09 352.100	FOF-1.5 257/400 33.40 256/400 E FNT-1.9.1 51/200 9.62 51/200 9.62 51/200 9.62 9.62 9.62 9.62 9.62	2.0 222,400 21.12 217,400 Geo-III 2015E 38/200 21.89	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47
Theorems Solved.400 Av. CPU Time Solutions First-order Non- theorems Solved.200 Av. CPU Time Solutions Effectively Propositional CNF Solved.200 Av. CPU Time Large Theory Batch Problems	43 380.400 12.20 374.400 Vampire 8AT-49 195.200 38.95 195.200 Vampire 40 192.200 27.61 Vampire 40 192.200	26 371:400 14.86 368:400 Prover 8AT-20 163:200 444.11 163:200 Prover 0.9 161:200 27.91 61:200 27.91	13.1 316:00 20.18 316:00 <i>iProver</i> 547-10 134:00 79.93 134:00 iProver 29 153:00 36.57 E 1.9.1-LTB	0.2 303/400 20.96 303/400 CVC4 FNT-15 71/200 57.78 71/200 E 1.9.1 101/200 11.09 Prover 2.9-137 2.0-96 0.3/4000 0.3/400 0.3/400 0	FOF-1.5 257/400 33.40 256/400 E FNT-1.9.1 51/200 9.62 51/200 9.62 51/200 9.62 9.62 9.62 9.62 9.62	2.0 222,400 21.12 217,400 Geo-III 2015E 38/200 21.89	2.2 159/400 46.76	0.7-0.3 127/400 30.15	1109a 1111.400 28.01	1.0 113:400 48.39	45 37,400 7.32	2015E 37/400 38.47

¹http://www.cs.miami.edu/~tptp/CASC/25/WWWFiles/DivisionSummary1.html

Reger, Suda

When Should We Add Theory Axioms And Which Ones?

- State of the art calculi / techniques
 - superposition [BG94,NR01]
 - AVATAR [V14]
 - InstGen [GK03]
 - finite model finding [McC94,CS04]
 - ► SInE [HV11]

4 A N

★ ∃ ▶ ★

- State of the art calculi / techniques
 - superposition [BG94,NR01]
 - AVATAR [V14]
 - InstGen [GK03]
 - finite model finding [McC94,CS04]
 - SInE [HV11]
- Careful engineering
 - indexing is essential [V95,V01]

- State of the art calculi / techniques
 - superposition [BG94,NR01]
 - AVATAR [V14]
 - InstGen [GK03]
 - finite model finding [McC94,CS04]
 - SInE [HV11]
- Careful engineering
 - indexing is essential [V95,V01]
- Heavy (optional) use of incomplete but useful procedures
 - Limited Resource Strategy [RV03]
 - Literal selection [HRSV16]
 - Set of Support
 - ▶ ...

• = • •

- State of the art calculi / techniques
 - superposition [BG94,NR01]
 - AVATAR [V14]
 - InstGen [GK03]
 - finite model finding [McC94,CS04]
 - SInE [HV11]
- Careful engineering
 - indexing is essential [V95,V01]
- Heavy (optional) use of incomplete but useful procedures
 - Limited Resource Strategy [RV03]
 - Literal selection [HRSV16]
 - Set of Support
 - **۱**...
- Decades of experience about the right design decisions [Andrei Voronkov]

MANCHESTER 5

- State of the art calculi / techniques
 - superposition [BG94,NR01]
 - AVATAR [V14]
 - InstGen [GK03]
 - finite model finding [McC94,CS04]
 - SInE [HV11]
- Careful engineering
 - indexing is essential [V95,V01]
- Heavy (optional) use of incomplete but useful procedures
 - Limited Resource Strategy [RV03]
 - Literal selection [HRSV16]
 - Set of Support
 - ▶ ...
- Decades of experience about the right design decisions [Andrei Voronkov]
- Database of problems and proofs and strategy scheduling based on it

MANCHESTER 5 / 23

The need for many strategies

- Theorem proving is hard
- Chaos reigns (butterfly effect)
- If a strategy solves, it usually does so very fast!
- We need to combine strategies
 - not only good ones overall
 - but also complementary / exotic ones

The need for many strategies

- Theorem proving is hard
- Chaos reigns (butterfly effect)
- If a strategy solves, it usually does so very fast!
- We need to combine strategies
 - not only good ones overall
 - but also complementary / exotic ones

CASC-mode

- Conditional schedule of strategies
- Optimized for a good coverage over the TPTP

MANCHESTER 6 /

A CASC-mode code excerpt

```
case Property::FNE:
 if (atoms > 2000) {
   quick.push("dis+1011_40_bs=on:cond=on:gs=on:gsaa=from_current:nwc=1:sfr
   quick.push("lrs+1011_3_nwc=1:stl=90:sos=on:spl=off:sp=reverse_arity_133
   quick.push("dis-10_5_cond=fast:gsp=input_only:gs=on:gsem=off:nwc=1:sas=
   quick.push("lrs+1011_5_cond=fast:gs=on:nwc=2.5:stl=30:sd=3:ss=axioms:sc
   quick.push("lrs-3_5:4_bs=on:bsr=on:cond=on:fsr=off:gsp=input_only:gs=or
 }
else if (atoms > 1200) {
   quick.push("lrs+1011_5_cond=fast:gs=on:nwc=2.5:stl=30:sd=3:ss=axioms:sc
   quick.push("dis+1011_8_bsr=unit_only:cond=fast:fsr=off:gs=on:gsaa=full_
   quick.push("dis+11_7_gs=on:gsaa=full_model:lcm=predicate:nwc=1.1:sas=mi
   quick.push("ins+11_5_br=off:gs=on:gsem=off:igbrr=0.9:igrr=1/64:igrp=140
 }
else {
   quick.push("dis+11_7_16");
   quick.push("dis+1011_5:4_gs=on:gsssp=full:nwc=1.5:sas=minisat:ssac=none
   quick.push("dis+1011_40_bs=on:cond=on:gs=on:gsaa=from_current:nwc=1:sfr
   . . .
```

・ロン ・四 ・ ・ ヨン ・ ヨン

Vampire and arithmetic

The big next challenge

• Reasoning with quantifiers and theories

Vampire and arithmetic

The big next challenge

• Reasoning with quantifiers and theories

- Evaluation of ground interpreted terms $(1 + 1 \longrightarrow 2)$
- Interpreted operations treated specially by ordering
- ullet Normalization of interpreted operations, i.e. only use \leq
- Theory axioms
 - hand-crafted set
 - either all added or none added (based on option)
- AVATAR with an SMT solver
 - current implementation for Z3
 - Idea: Vampire only explores theory-consistent ground sub-problems

Results for TFA (Typed First-order Theorems $+*-/)^2$

Reger, Suda

When Should We Add Theory Axioms And Which Ones?

MANCHESTER 9

Axiom selection experiment

Motivation

ARI581=1.p is a small problem which the default strategy solves instantly if we add all axioms except the commutativity of +, but does not solve in 60 seconds with commutativity.

Axiom selection experiment

Motivation

ARI581=1.p is a small problem which the default strategy solves instantly if we add all axioms except the commutativity of +, but does not solve in 60 seconds with commutativity.

The experiment

Take the 15 pre-selected axioms for reasoning about linear integers, consider all 2^{15} strategies corresponding to each subset, evaluate them on a set of problems and see what can be (machine-) learned from that.

The 15 hand-crafted axioms (for linear integers)

$$X + 0 = X$$
 2 $0 + X = X$

3
$$X + Y = Y + X$$
 4 $X + (Y + Z) = (X + Y) + Z$

5 0 = X + (-X) 6 (-X) + (-Y) = -(X + Y)

7
$$(X + (-Y)) + Y = X$$

8 $X \leq X$ 9 $X \leq Y \lor Y \leq X$

10
$$X \leq Y \lor Y \leq X \lor X = Y$$
 11 $X \leq Y \lor Y \leq Z \lor X \leq Z$

- 12 $X \leq Y \lor Y + 1 \leq X$ 13 $X \not\leq Y \lor Y + 1 \not\leq X$
- 14 $X + 1 \leq X$ 15 $X \leq Y \lor X + Z \leq Y + Z$

1

Preparation

Test problems selection

- Start with all TFA problems in TPTP (1128 problems)
- Focus on pure integer arithmetic with linear operators (+,-) (giving 515 problems)
- Drop those solvable by Vampire using the default strategy without theory axioms (and no Z3) in 30 seconds
- Giving us 282 problems in total

Preparation

Test problems selection

- Start with all TFA problems in TPTP (1128 problems)
- Focus on pure integer arithmetic with linear operators (+,-) (giving 515 problems)
- Drop those solvable by Vampire using the default strategy without theory axioms (and no Z3) in 30 seconds
- Giving us 282 problems in total

Obtaining the data

- There are 15 theory axioms relevant to our set of problems
- This gives 32,768 combinations of theory axioms
- Given 282 problems this gives 9,273,344 experiments
- We ran each experiment for 5 seconds
- Almost 1.4 years of computation time... Thank you, StarExec!

"The cube" - basic info

Strategies

- med: 63 at (0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1)
- max: 115 at (0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1)
- avg: 60.9
- $2^{15} 4$ such that there exists a problem solved by it

"The cube" - basic info

Strategies

- med: 63 at (0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1)
- max: 115 at (0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1)
- avg: 60.9
- $2^{15} 4$ such that there exists a problem solved by it

Problems

- min: 9 at ARI182=1.p
- med: 11869 at DAT026=1.p
- max: 32460 at NUM893=1.p
- avg: 14054.0
- 142 such that there exists a strategy solving it

MANCHESTER 13 / 23

Reducing the complexity without losing solutions

$\begin{array}{l} \text{*-notations} \\ S(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) = 0 \\ S(0,1,1,0,0,0,1,1,0,1,1,1,0,1,1) = 115 \\ S(*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*) = 142 \\ C(*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*) = 15 \end{array}$

When Should We Add Theory Axioms And Which Ones?

MANCHESTER 14 / 23

Reducing the complexity without losing solutions

*-notations

 $\begin{array}{l} S(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)=0\\ S(0,1,1,0,0,0,1,1,0,1,1,1,0,1,1)=115\\ S(*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*)=142\\ C(*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*)=15 \end{array}$

Hardcoding choices about particular axioms

- If there is an index i = 1, ..., 15 s.t. a[i] = *and a value $v \in \{0, 1\}$ s.t. $S(a) = S(a[i \rightarrow v])$ then recurse on $a[i \rightarrow v]$
- otherwise report a and C(a)

Reducing the complexity - results

Four winners $a_1 = (0, 0, *, *, 0, 0, *, 1, *, *, *, *, 0, *, *)$ $a_2 = (1, *, *, *, 0, 0, 1, 0, *, *, *, *, 0, *, *)$ $a_3 = (1, 0, *, *, 0, 0, *, 0, *, *, *, *, 0, *, *)$ $a_4 = (1, 0, *, 1, *, 0, *, 1, *, *, *, *, *, 0, *)$ $C(a_i) = 9, S(a_i) = 142$

When Should We Add Theory Axioms And Which Ones?

Reducing the complexity - results

Four winners

$$\begin{aligned} &a_1 = (0, 0, *, *, 0, 0, *, 1, *, *, *, *, 0, 0, *, *, *, *, 0, 0, *, 0, *, *, *, *, 0, 0, *, 0, *, *, *, *, 0, *, *, *, *, 0, *, *, *, a_3 = (1, 0, *, *, 0, 0, *, 0, *, 0, *, *, *, *, 0, *, *) \\ &a_4 = (1, 0, *, 1, *, 0, *, 1, *, *, *, *, *, 0, *) \\ &C(a_i) = 9, S(a_i) = 142 \end{aligned}$$

Other "leaf" nodes

- $S(_-) = 142$, but $C(_-) > 9$ and cannot be minimized further
- 31 more with C(_) = 10
 20 more with C(_) = 11
 6 more with C(_) = 12

< /₽ > < E > <

"Greedy" CASC mode creation

Finding a good schedule

- pose as the set cover problem
- employ the obvious greedy algorithm

"Greedy" CASC mode creation

Finding a good schedule

- pose as the set cover problem
- employ the obvious greedy algorithm

ord	contrib	choices	best	strategy
1	115	1	115	(0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1)
2	12	5	93	(0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1)
3	6	5	87	(0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1)
4	3	38	90	(1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1)
5	2	17	49	(1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0)
6	1	459	100	(1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1)
7	1	450	88	(0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1)
8	1	229	85	(0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1)
9	1	166	67	(1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0)
	142	$\ll 2^{15}$		

Machine Learning Experiments

- Tried to apply some out-of-the-box techniques
- More specifically
 - Split problems into training and testing
 - Extracted some features from problems
 - Used these to prepare some
 - Downloaded WEKA and tried running some of the algorithms
- Details next...
- Summary of lessons learned
 - Nothing truly 'out-of-the-box' as need to understand parameters
 - WEKA struggled with amount of data
 - Still not clear how best to harness machine learning

Problem Features

• Just considered static features initially. For example,

- Standard syntactic features not related to theory reasoning
- Frequency of each interpreted operation (generally and in goal)
- Frequency of sorted variables and equalities (generally and in goal)
- Usage of special numbers 0 and 1
- Ideas for dynamic features (i.e. after short run)
 Inspect descendants of each theory axiom and look for
 - Involvement with goal
 - Reductions (of and with)
 - Interaction with other theory axioms (pure descendants)
 - Groundness

MANCHESTER 18 / 23

Idea 1: Classification

- Want: function from problem feature vector to set of theory axioms
- Issue: 2¹⁵ different 'classes'
- Idea: train classifier per axiom, with other axioms as extra features
- i.e. given problem and other axioms should I use this one?
- New Issue: Unclear how to combine classifiers (search problem?)
- Tried a few algorithms on slightly different problem
 - Given problem features, axioms used and class (whether solved)
 - Build model for predicting class
 - Linear regression had 0.72 accuracy
 - Naive Bayes had 0.829 precision, 0.593 recall
 - SVM methods never finished

MANCHESTER 19 / 23

Idea 2: Association Rule Mining

- Idea: Mine rules that indicate associations between axioms
- Hopefully of the form If adding A then I should probably (not) add B
- Could be used to suggest which axiom sets are sensible
- Input is just the set of axioms used for each experiment
- Currently treat positive and negative data separately
- Use association rule mining
- Initial experiment failed to find rules with good confidence

MANCHESTER 20 / 23

Tentative conclusion

What have been done?

- No blood, sweat, nor tears, yet!
- Simplified "small" setup

Tentative conclusion

What have been done?

- No blood, sweat, nor tears, yet!
- Simplified "small" setup

In real life ...

- only limited number of samples from the strategy space
 - but can get as many as we want
- how to sample adaptively?

Tentative conclusion

What have been done?

- No blood, sweat, nor tears, yet!
- Simplified "small" setup

In real life ...

- only limited number of samples from the strategy space
 - but can get as many as we want
- how to sample adaptively?

Other things to try

 mining proofs to see which axioms were used together in proofs, or more complex relations

More questions

How do we evaluate what we (will) have done?

- It is too easy to win against a single best strategy!
- With time reduced to 2.5s the best strategy still solves 112 problems and the largest union of two strategies has size 125.

More questions

How do we evaluate what we (will) have done?

- It is too easy to win against a single best strategy!
- With time reduced to 2.5s the best strategy still solves 112 problems and the largest union of two strategies has size 125.

For theory axioms; what is important?

- Is it more important to be conservative, i.e., knowing what not to add to avoid explosion?
- Is there actually a problem to be solved via machine learning here, or can we just develop some hand-built heuristics that are good enough?

Thank you for attention!

Any answers?

Reger, Suda

When Should We Add Theory Axioms And Which Ones?

MANCHESTER 23

∃ →

A (10) F (10)

Thank you for attention!

Any questions?

Reger, Suda

When Should We Add Theory Axioms And Which Ones?

MANCHESTER 23

∃ →

A (10) F (10)

Thank you for attention!

Let's go skiing!

Reger, Suda

When Should We Add Theory Axioms And Which Ones?

MANCHESTER 23

э.

I ≡ ►

< 🗗 🕨