Whipping Satallax A sadistic approach to internal guidance

Michael Färber Chad Brown

6 April 2016

- Introduction
- FEMaLeCoP
- Satallax
- Evaluation

Introduction

Chad Brown a.k.a. Marquis de Sade

Figure 1: Američan v Praze.

120 days of learning – a play in 3 acts

Protagonists

- Josef Urban
- Cezary Kaliszyk
- Daniel Kühlwein
- Chad Brown

Projects

- MaLeS: Machine Learning of Strategies, invent ATP strategies automatically
- MaLeCoP & FEMaLeCoP: (Fairly Efficient) Machine Learning Connection Prover
- Satallax: an ATP for higher-order logic

FEMaLeCoP

FEMaLeCoP = IeanCoP + fast ML

The three steps to learning

- 1. Record which contrapositives (clause + literal) are useful in which prover state
- 2. Create efficient classifier from learnt data
- 3. Rank future choices using classifier

What to influence?

tableau extension step: choice of contrapositive

How to characterise prover state?

symbols of previously chosen literals on active path

Ranking

Naive Bayes

find contrapositive l (label) with maximal probability to be useful in conjunction with path symbols \vec{f} (features)

$$r(I,\vec{f}) = P(I)\prod_{i} P(f_i \mid I)$$

In practice (simplified)

$$r(l, \vec{f}) = \log D_l + \sum_i \log(\mathrm{idf}(f_i))c(l, f_i)$$

$$c(l, f) = \begin{cases} \sigma & \text{if } D_{l, f} = 0\\ \log \frac{D_{l, f}}{D_{l}} & \text{otherwise} \end{cases}$$

 D_I is occurrence of I, and $D_{I,f}$ is co-occurrence of I with f

Satallax

Satallax 101

Basic procedure

- Based on given clause algorithm
- Uses SAT solver to find contradictions among active clauses

Vocabulary

- Priority queue: holds proof commands such as Formula Processing, Mating, Confrontation, ...
- Priority determined by a set of flags, which form a mode
- Set of modes with runtime weight is called strategy (MaLeS used to find modes / strategy)

ML-ATP questions

Questions

- Where to influence proof search?
- How to characterise prover state?

Point of influence

- More than 90% of commands on priority queue are ProcessProp and store only a term
- Influence priority of commands (caution not to influence too much for fairness towards other commands)
- Difference to FEMaLeCoP: also remember intermediate facts \rightarrow "lemma learning"

Collecting training data

When to record data?

- Data recording during proof search can considerably hurt success rate
- Solution: Save data only once proof has been found

What data to save?

- Conjecture (if given)
- Axioms (problem premises)
- Processed terms + their priorities
- Refutation terms (set of terms actually used for the proof)

Training data postprocessing

Positive / negative examples

- Positive examples: Processed terms ∩ refutation terms
- Negative examples: All other processed terms

Options

- Discard terms with fresh variables
- Normalise all symbols in terms, i.e. (a + b) + c = a + (b + c) becomes c₁(c₁(c₂, c₃), c₄) = c₁(c₂, c₁(c₃, c₄))
- Normalise only fresh variables
- Only keep axiom terms (to measure "premise selection effect")

Possible features

- Axioms
- Symbols of processed terms

Naive Bayes classification with monoid occurrences

Problem

- Only positive examples à la FEMaLeCoP give bad results
- How to integrate negative examples? Multiple classifiers, ...?

Solution

- Generalised classifier to store term occurrences as monoid types
- Allows easy extension of classifier to different kinds of occurrences (e.g. neutral examples) while keeping performance high

In Code

- Before: lbl_no : ('1, int) Hashtbl.t
- After: lbl_no : ('l, LabelNo.t) Hashtbl.t, where LabelNo is a Monoid

Monoids

Commutative monoid

Commutative monoid is (M, +) with a neutral element $0 \in M$ s.t.:

•
$$(a+b)+c = a+(b+c)$$

•
$$a + 0 = a$$

•
$$a+b=b+a$$

Monoids as label occurrences

- 0 represents the non-occurrence of a label.
- + combines label occurrences.
- Commutativity of +: order of learnt labels does not matter.

Pair monoid for positive/negative examples

Let $M = (\mathbb{N} \times \mathbb{N}, +_M)$, $0_M = (0, 0)$ and $+_M$ pairwise addition. The first/second pair elements store positive/negative label occurrences.

The core ranking formula

Pair monoid ranking

$$r(I) = \frac{|p-n|}{p+n}(\sigma_p p + \sigma_n n)$$

p, n ... number of positive/negative occurrences of I

•
$$\sigma_p = 1, \sigma_n = -1$$

• $\frac{|p-n|}{p+n}$... "confidence"; the less controversial a label, the higher its influence

What about features?

did not increase success rate, but incurred performance decrease

Tuning of guidance parameters

Off-line tuning via training data

- Rank all examples with classifier
- For every positive example, sum up number of preceding negative examples
- Find guidance values with minimal sum

Particle Swarm Optimization

 Run ATP with different parameters and modify them automatically depending on how many problems solved

Outcome

Off-line tuning fast to find initial values, but PSO more reliable

Evaluation

Evaluation

On-line learning

Learn data after each successful proof and use in all subsequent proof attempts (1x fold)

Off-line learning

Try all problems and save training data, then try all unsolved problems with guidance from training (2x map)

Results

Test set

THF version of Flyspeck from Cezary, with 14185 problems

Satallax without guidance

- 1s, auto strategy: 2717 problems
- 2s, auto strategy: 3394 problems
- 2s, auto strategy restricted to 1s modes: 2845 problems

Satallax with guidance

- On-line learning (1s): 3374 problems
- Off-line learning (1s): 3428 problems

Conclusion

When to use internal guidance?

- Satallax could be used to continually improve itself in an ITP situation with on-line learning
- When run on multiple cores, off-line learning a fast alternative

Future work

- Negative examples in FEMaLeCoP via new NB classifier with monoids
- Integrate internal guidance in ITP
- Use more training data for classifier (features ...?)
- Different features, e.g. TPTP