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Talk Overview

- Al over formal mathematics
- Premise selection overview

- The methods tried so far

- Features for mathematics

- Internal guidance
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Al OVER FORMAL MATHEMATICS



Inductive/Deductive Al over Formal Mathematics

- Alan Turing, 1950: Computing machinery and intelligence
- beginning of Al, Turing test
- last section of Turing’s paper: Learning Machines

- Which intellectual fields to use for building AI?

- But which are the best ones [fields] to start [learning on]
with?

- Even this is a difficult decision. Many people think that a

very abstract activity, like the playing of chess, would be best.
- Our approach in the last decade:

- Let’s develop AI on large formal mathematical libraries!
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Why AI on large formal mathematical libraries?

- Hundreds of thousands of proofs developed over centuries

- Thousands of definitions/theories encoding our abstract

knowledge
- All of it completely understandable to computers (formality)
- solid semantics: set/type theory
- built by safe (conservative) definitional extensions

- unlike in other “semantic” fields, inconsistencies are

practically not an issue
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Deduction and induction over large formal libraries

- Large formal libraries allow:

- strong deductive methods — Automated Theorem Proving

- inductive methods like Machine Learning (the libraries are
large)

- combinations of deduction and learning

- examples of positive deduction-induction feedback loops:

- solve problems — learn from solutions — solve more

problems ...
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Useful: AI-ATP systems (Hammers)
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AITP techniques

- High-level Al guidance:

- premise selection: select the right lemmas to prove a new fact
- based on suitable features (characterizations) of the formulas
- and on learning lemma-relevance from many related proofs

- Mid-level AI guidance:

- learn good ATP strategies/tactics/heuristics for classes of
problems

- learning lemma and concept re-use

- learn conjecturing

- Low-level Al guidance:

- guide (almost) every inference step by previous knowledge
- good proof-state characterization and fast relevance
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PREMISE SELECTION



Premise selection

Intuition

Given:

- set of theorems T (together with proofs)

- conjecture c
Find: minimal subset of T that can be used to prove c

More formally

argmin{|¢| | ¢t F c}
tCT
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In machine learning terminology

Multi-label classification

Input: set of samples S, where samples are triples s, F/(s), L(s)

- s is the sample ID
- F(s) is the set of features of s

- L(s) is the set of labels of s

Output: function f that predicts list of n labels (sorted by
relevance) for set of features

Sample add comm (a + b = b + a) could have:

. F(addicomm) = {“+”, u:n, unumn

- L(add comm) = {num_induct, add 0, add_suc, add def}
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Not exactly the usual machine learning problem

Observations

- Labels correspond to premises and samples to theorems

- Very often same
- Similar theorems are likely to have similar premises
- A theorem may have a similar theorem as a premise
- Theorems sharing logical features are similar
- Theorems sharing rare features are very similar
- Fewer premises = they are more important

- Recently considered theorems and premises are important
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Not exactly for the usual machine learning tools

Classifier requirements

- Multi-label output
- Often asked for 1000 or more most relevant lemmas
- Bfficient update

- Learning time + prediction time small

- User will not wait more than 10-30 sec for all phases
- Large numbers of features

- Complicated feature relations
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k-NEAREST NEIGHBOURS




k-NN

Standard k-NN

Given set of samples S and features f

1. For each s € S, calculate distance d'(f, s) = ||f — F(s)||

2. Take k samples with smallest distance, and return their labels
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Feature weighting for k-NN: IDF

- If a symbol occurs in all formulas, it is boring (redundant)

- A rare feature (symbol, term) is much more informative than

a frequent symbol
- IDF: Inverse Document Frequency:
- Features weighted by the logarithm of their inverse frequency

D]

IDR(t, D) =log e p e )

- This helps a lot in natural language processing
- Smothed IDF also helps:

1
1+|{deD:ted}

IDFy(t, D) =
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k-NN Improvements for Premise Selection

- Adaptive k

- Rank (neighbours with smaller distance)

rank(s) = |{s' | d(f,s) < d(f,s")}]

- Age
- Include samples as labels

- Different weights for sample labels
- Simple feature-based indexing

- BEuclidean distance, cosine distance, Jaccard similarity

- Nearness
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NAIVE BAYES




- For each fact f: Learn a function 7y that takes the features of

a goal g and returns the predicted relevance.

- A baysian approach

P(f is relevant for proving g)
= P(f is relevant | g’s features)
= P(f is relevant | f1,...,fn)

P(f is relevant)II? , P(f; | f is relevant)

#£f; appears when f is a proof dependency
7##f is a proof dependency

R

#f is a proof dependency - IT7"_,
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Naive Bayes: first adaptation to premise selection

#f; appears when f is a proof dependency
#f is a proof dependency

#f is a proof dependency-II7_;

- Uses a weighted sparse naive bayes prediction function:

r¢(fir-- o fa) =In C + > w;(In(rg;) — In C) Z w;o

j : C]'#O

- Where fi,..., f, are the features of the goal.
- Wi, ..., W, are weights for the importance of the features.
- C' is the number of proofs in which f occurs.

- ¢j < C'is the number of such proofs associated with facts described
by f; (among other features).

- m and o are predefined weights for known and unknown features. 4, ;4



Naive Bayes: second adaptation

extended features F(¢) of a fact ¢

features of ¢ and of the facts that were proved using ¢

(only one iteration)
More precise estimation of the relevance of ¢ to prove 7:
P(¢ is used in 9’s proof)

. erp(y)mf(qS) P (4 has feature f | ¢ is used in 9’s proof)

: HfEF(v)ff(m P (4 has feature f | ¢ is not used in 3’s proof)

. erf(qs)—F(y) P(¢ does not have feature f | ¢ is used in 9’s proof)
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All these probabilities can be computed efficiently!

Update two functions (tables):

- t(¢): number of times a fact ¢ occurs as a dependency
- 8(¢, f): number of times a fact ¢ occurs as a dependency of a

fact described by feature f

Then:
P(¢ i used in a proof of (any) ¥) = 22}
P(4 has feature f | ¢ is used in 9’s proof) = 3%{ )
P(% does not have feature f | ¢ is used in ¢’s proof) = 1 — si‘fd){ )
t(¢)
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RANDOM FORESTS




Random Forest Definition

A random forest is a set of decision trees constructed from
random subsets of the dataset.

Characteristics
- easily parallelised

- high prediction speed (once trained :)
- good prediction quality (claimed e.g. in [Caruana2006])

- Offline forests: Agrawal et al. (2013)

- developed for proposing ad bid phrases for web pages
- trained periodically on whole set, old results discarded

- Online forests: Saffari et al. (2009)

- developed for computer vision object detection
- new samples added each tree a random number of times
- split leafs when too big or good splitting features

- features encountered first are higher up in trees: bias
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Example Decision Tree

ax(b+c)= a+b= sinz=

axb+axc b+a —sin(—z)
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RF improvements for premise selection

- Feature selection: Gini + feature frequency
- Modified tree size criterion

- (number of labels logarithmic in number of all labels)

- Multi-path tree querying (introduce a few “errors”) with

weighting
deerrors
w simple
f(d,m) = —2— inverse
w% linear

- Combine tree / leaf results using harmonic mean
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Comparison
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Other Tried Premise Selection Techniques

- Syntactic methods

- Neighbours using various metrics
- Recursive: SInE, MePo

- Neural Networks (flat, SNoW)

- Winnow, Perceptron
- Linear Regression

- Needs feature and theorem space reduction
- Kernel-based multi-output ranking

- Works better on small datasets
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FEATURES




Features used so far for learning

- Symbols
- symbol names or type-instances of symbols
- Types
- type constants, type constructors, and type classes
- Subterms
- various variable normalizations
- Meta-information

- theory name, presence in various databases
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Semantic Features

- The features have to express important semantic relations

- The features must be efficient
- In this work, features for:

- Matching
- Unification

- Efficiency achieved by using optimized ATP indexing trees:

- discrimination trees
- substitution trees

- Connections between subterms in a term
- Paths in Term Graphs
- Validity of formulas in diverse finite models

- semantic, but often expensive
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GUIDANCE FOR ATPS




leanCoP: Lean Connection Prover (Jens Otten)

- Connected tableaux calculus
- Goal oriented, good for large theories
- Regularly beats Metis and Prover9 in CASC

- despite their much larger implementation
- very good performance on some ITP challenges

- Compact Prolog implementation, easy to modify

- Variants for other foundations: iLeanCoP, mLeanCoP

- First experiments with machine learning: MaLeCoP
- Basy to imitate
- leanCoP tactic in HOL Light
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Internal Guidance for LeanCoP

Very simple calculus:

- Reduction unifies the current literal with a literal on the path

- BExtension unifies the current literal with a copy of a clause

{3, M, Path wom

C, M, Path U{Ly}
cu {Ll}, M, Path U {Lg}

Reduction

Cy\ {Ls}, M, PathU{L;}  C, M, Path
cu {Ll}, M, Path

Ezxtension
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FEMaLeCoP: Advice Overview and Used Features

- Advise the:
- selection of clause for every tableau extension step
- Proof state: weighted vector of symbols (or terms)

- extracted from all the literals on the active path
- Frequency-based weighting (IDF)

- Simple decay factor (using maximum)
- Consistent clausification

- formula ? [X]: p(X) becomes p (' skolem (? [A]:p(A),1)")
- Advice using custom sparse naive Bayes

- association of the features of the proof states
- with contrapositives used for the successful extension steps
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FEMaLeCoP: Data Collection and Indexing

- Slight extension of the saved proofs
- Training Data: pairs (path, used extension step)
- External Data Indexing (incremental)
- te_num: number of training examples
- pf_no: map from features to number of occurrences € QQ
- cn_no: map from contrapositives to numbers of occurrences
- cn_pf_no: map of maps of cn/pf co-occurrences
- Problem Specific Data
- Upon start FEMaLeCoP reads
- only current-problem relevant parts of the training data
- cn_no and cn_pf no filtered by contrapositives in the problem
- pf noandcn_ pf no filtered by possible features in the problem
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Naive Bayes (1/2)

Estimate the relevance of each contrapositive ¢ by

P(¢ is used in a proof in state ¥ | ¥ has features F(y))

where F'(7y) are the features of the current path.
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Naive Bayes (1/2)

Estimate the relevance of each contrapositive ¢ by

P(¢ is used in a proof in state ¥ | ¥ has features F(y))
where F'(7y) are the features of the current path.

Assuming the features are independent, this is:

P(p is used in 9’s proof)
. erp(«/)mF(q:) P (% has feature f | ¢ is used in ¥’s proof)

. erF(ﬂy)fF(w) P (% has feature f | ¢ is not used in ¥’s proof)

. erp(ap)—ﬁ'(y) P (3 does not have f | ¢ is used in 9’s proof)
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Naive Bayes (2/2)

All these probabilities can be estimated (using training examples):

amt+ 3 im0 T ita 3 i)ma- (f))

Fe(ns) Fe(G-3) FeG—1)

where

- f are the features of the path

- 5 are the features that co-occurred with ¢
- t=-cn_no(p)

- s=cn_fp_no(p)

- 1 is the IDF

- 0,4 are experimentally chosen parameters
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SUMMARY




- Formal Mathematics could be very interesting for Al

- Easy to make arbitrarily many experiments
- And conversely: Al is very useful

- Premise selection potential for improvement
- Stronger techniques too slow or not precise?
- Internal guidance for Automated Theorem Proving

- Fast learning algorithm, indexing, approximate features

- Characterization of mathematical reasoning
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