Modular Architecture for Proof Advice AITP Components

Cezary Kaliszyk

03 April 2016

University of Innsbruck, Austria

- $\cdot\,$ AI over formal mathematics
- · Premise selection overview
- $\cdot\,$ The methods tried so far
- · Features for mathematics
- · Internal guidance

AI OVER FORMAL MATHEMATICS

Inductive/Deductive AI over Formal Mathematics

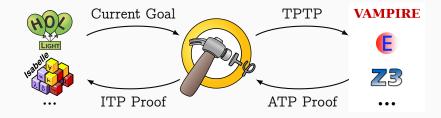
- · Alan Turing, 1950: Computing machinery and intelligence
- · beginning of AI, Turing test
- · last section of Turing's paper: Learning Machines
- \cdot Which intellectual fields to use for building AI?
 - But which are the best ones [fields] to start [learning on] with?
 - •••
 - Even this is a difficult decision. Many people think that a very abstract activity, like the playing of chess, would be best.
- · Our approach in the last decade:
 - · Let's develop AI on large formal mathematical libraries!

Why AI on large formal mathematical libraries?

- $\cdot\,$ Hundreds of thousands of proofs developed over centuries
- · Thousands of definitions/theories encoding our abstract knowledge
- · All of it completely understandable to computers (formality)
- \cdot solid semantics: set/type theory
- $\cdot\,$ built by safe (conservative) definitional extensions
- unlike in other "semantic" fields, inconsistencies are practically not an issue

- · Large formal libraries allow:
- · strong deductive methods Automated Theorem Proving
- inductive methods like Machine Learning (the libraries are large)
- \cdot combinations of deduction and learning
- $\cdot\,$ examples of positive deduction-induction feedback loops:
- \cdot solve problems \rightarrow learn from solutions \rightarrow solve more problems ...

Useful: AI-ATP systems (Hammers)



Proof Assistant Hammer ATP

AITP techniques

- · High-level AI guidance:
 - · premise selection: select the right lemmas to prove a new fact
 - \cdot based on suitable features (characterizations) of the formulas
 - · and on learning lemma-relevance from many related proofs
- · Mid-level AI guidance:
 - learn good ATP strategies/tactics/heuristics for classes of problems
 - · learning lemma and concept re-use
 - learn conjecturing
- · Low-level AI guidance:
 - guide (almost) every inference step by previous knowledge
 - \cdot good proof-state characterization and fast relevance

PREMISE SELECTION

Intuition

Given:

- · set of theorems T (together with proofs)
- · conjecture c

Find: minimal subset of T that can be used to prove c

More formally

$$rgmin_{t\subseteq T}\{|t|\mid tdash c\}$$

In machine learning terminology

Multi-label classification

Input: set of samples S, where samples are triples s, F(s), L(s)

- $\cdot s$ is the sample ID
- $\cdot F(s)$ is the set of features of s
- · L(s) is the set of labels of s

Output: function f that predicts list of n labels (sorted by relevance) for set of features

Sample add_comm (a + b = b + a) could have:

- F(add_comm) = {"+", "=", "num"}

Observations

- Labels correspond to premises and samples to theorems
 Very often same
- $\cdot\,$ Similar theorems are likely to have similar premises
- $\cdot\,$ A theorem may have a similar theorem as a premise
- · Theorems sharing logical features are similar
- · Theorems sharing rare features are very similar
- \cdot Fewer premises = they are more important
- · Recently considered theorems and premises are important

Classifier requirements

- · Multi-label output
 - · Often asked for 1000 or more most relevant lemmas
- · Efficient update
 - Learning time + prediction time small
 - · User will not wait more than 10-30 sec for all phases
- $\cdot \,$ Large numbers of features
 - · Complicated feature relations

k-NEAREST NEIGHBOURS

Standard k-NN

Given set of samples $\mathbb S$ and features $ec{f}$

- 1. For each $s \in \mathbb{S},$ calculate distance $d'(ec{f},s) = \|ec{f} ec{F}(s)\|$
- 2. Take k samples with smallest distance, and return their labels

Feature weighting for k-NN: IDF

- · If a symbol occurs in all formulas, it is boring (redundant)
- A rare feature (symbol, term) is much more informative than a frequent symbol
- · IDF: Inverse Document Frequency:
- $\cdot\,$ Features weighted by the logarithm of their inverse frequency

$$ext{IDF}(t,D) = \log rac{|D|}{|\{d \in D: t \in d\}|}$$

- $\cdot\,$ This helps a lot in natural language processing
- · Smothed IDF also helps:

$$ext{IDF}_1(t,D) = rac{1}{1+|\{d\in D:t\in d\}|}$$

k-NN Improvements for Premise Selection

· Adaptive k

Rank (neighbours with smaller distance)

$$\mathrm{rank}(s) = |\{s' \mid d(f,s) < d(f,s')\}|$$

· Age

- $\cdot\,$ Include samples as labels
 - · Different weights for sample labels
- · Simple feature-based indexing
 - · Euclidean distance, cosine distance, Jaccard similarity
 - · Nearness

NAIVE BAYES

Naive Bayes

- For each fact f: Learn a function r_f that takes the features of a goal g and returns the predicted relevance.
- · A baysian approach

 $\begin{array}{rcl} P(f \text{ is relevant for proving } g) \\ = & P(f \text{ is relevant } \mid g\text{'s features}) \\ = & P(f \text{ is relevant } \mid f_1, \dots, f_n) \\ \propto & P(f \text{ is relevant}) \prod_{i=1}^n P(f_i \mid f \text{ is relevant}) \\ \propto & \#f \text{ is a proof dependency} \cdot \prod_{i=1}^n \frac{\#f_i \text{ appears when } f \text{ is a proof dependency}}{\#f \text{ is a proof dependency}} \end{array}$

Naive Bayes: first adaptation to premise selection

#f is a proof dependency $\prod_{i=1}^{n} \frac{\#f_i \text{ appears when } f \text{ is a proof dependency}}{\#f \text{ is a proof dependency}}$

· Uses a weighted sparse naive bayes prediction function:

$$r_f(f_1,\ldots,f_n) = \ln \ C \ + \sum_{j\,:\, c_j
eq 0} w_j ig(\ln \left(\pi \, c_j
ight) - \ln \ C ig) \ + \sum_{j\,:\, c_j = 0} w_j \sigma$$

- Where f_1, \ldots, f_n are the features of the goal.
- w_1, \ldots, w_n are weights for the importance of the features.
- \cdot C is the number of proofs in which f occurs.
- $c_j \leq C$ is the number of such proofs associated with facts described by f_j (among other features).
- $\cdot \, \pi$ and σ are predefined weights for known and unknown features. $_{_{19/39}}$

extended features $\overline{F}(\phi)$ of a fact ϕ

features of ϕ and of the facts that were proved using ϕ (only one iteration)

More precise estimation of the relevance of ϕ to prove γ :

 $P(\phi \text{ is used in } \psi \text{'s proof})$ $\cdot \prod_{f \in F(\gamma) \cap \overline{F}(\phi)} P(\psi \text{ has feature } f \mid \phi \text{ is used in } \psi \text{'s proof})$ $\cdot \prod_{f \in F(\gamma) - \overline{F}(\phi)} P(\psi \text{ has feature } f \mid \phi \text{ is not used in } \psi \text{'s proof})$ $\cdot \prod_{f \in \overline{F}(\phi) - F(\gamma)} P(\psi \text{ does not have feature } f \mid \phi \text{ is used in } \psi \text{'s proof})$

All these probabilities can be computed efficiently!

Update two functions (tables):

- $t(\phi)$: number of times a fact ϕ occurs as a dependency
- · $s(\phi, f)$: number of times a fact ϕ occurs as a dependency of a fact described by feature f

Then:

$$P(\phi \text{ is used in a proof of (any) } \psi) = rac{t(\phi)}{K}$$

 $P(\psi \text{ has feature } f \mid \phi \text{ is used in } \psi \text{'s proof}) = rac{s(\phi, f)}{t(\phi)}$
 $P(\psi \text{ does not have feature } f \mid \phi \text{ is used in } \psi \text{'s proof}) = 1 - rac{s(\phi, f)}{t(\phi)}$
 $pprox 1 - rac{s(\phi, f) - 1}{t(\phi)}$

RANDOM FORESTS

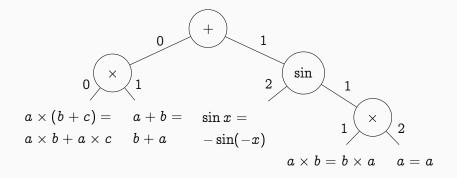
Random Forest Definition

A random forest is a set of decision trees constructed from random subsets of the dataset.

Characteristics

- \cdot easily parallelised
- high prediction speed (once trained :)
- · good prediction quality (claimed e.g. in [Caruana2006])
- · Offline forests: Agrawal et al. (2013)
 - \cdot developed for proposing ad bid phrases for web pages
 - · trained periodically on whole set, old results discarded
- · Online forests: Saffari et al. (2009)
 - · developed for computer vision object detection
 - $\cdot\,$ new samples added each tree a random number of times
 - $\cdot\,$ split leafs when too big or good splitting features
 - · features encountered first are higher up in trees: bias

Example Decision Tree

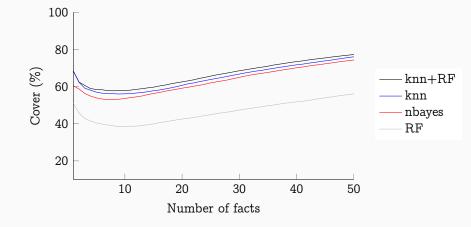


RF improvements for premise selection

- · Feature selection: Gini + feature frequency
- · Modified tree size criterion
 - · (number of labels logarithmic in number of all labels)
- Multi-path tree querying (introduce a few "errors") with weighting

$$w = \prod_{d \in errors} f(d,m)$$
 $f(d,m) = egin{cases} w & ext{simple} \ rac{w}{m-d} & ext{inverse} \ rac{w}{m} & ext{inverse} \ rac{w}{m} & ext{linear} \end{cases}$

 \cdot Combine tree / leaf results using harmonic mean



Other Tried Premise Selection Techniques

- · Syntactic methods
 - · Neighbours using various metrics
 - · Recursive: SInE, MePo
- · Neural Networks (flat, SNoW)
 - · Winnow, Perceptron
- · Linear Regression
 - · Needs feature and theorem space reduction
- · Kernel-based multi-output ranking
 - · Works better on small datasets

FEATURES

Features used so far for learning

- \cdot Symbols
 - $\cdot\,$ symbol names or type-instances of symbols
- · Types
 - $\cdot\,$ type constants, type constructors, and type classes
- · Subterms
 - various variable normalizations
- \cdot Meta-information
 - theory name, presence in various databases

Semantic Features

- $\cdot\,$ The features have to express important semantic relations
- · The features must be efficient
- · In this work, features for:
 - · Matching
 - Unification
- · Efficiency achieved by using optimized ATP indexing trees:
 - discrimination trees
 - substitution trees
- \cdot Connections between subterms in a term
 - · Paths in Term Graphs
- $\cdot\,$ Validity of formulas in diverse finite models
 - semantic, but often expensive

GUIDANCE FOR ATPS

- \cdot Connected tableaux calculus
 - Goal oriented, good for large theories
- $\cdot\,$ Regularly beats Metis and Prover9 in CASC
 - · despite their much larger implementation
 - · very good performance on some ITP challenges
- · Compact Prolog implementation, easy to modify
 - · Variants for other foundations: iLeanCoP, mLeanCoP
 - · First experiments with machine learning: MaLeCoP
- · Easy to imitate
 - · leanCoP tactic in HOL Light

Internal Guidance for LeanCoP

Very simple calculus:

- \cdot Reduction unifies the current literal with a literal on the path
- Extension unifies the current literal with a copy of a clause

- \cdot Advise the:
 - selection of clause for every tableau extension step
- · Proof state: weighted vector of symbols (or terms)
 - \cdot extracted from all the literals on the active path
 - · Frequency-based weighting (IDF)
 - · Simple decay factor (using maximum)
- · Consistent clausification
 - formula ?[X]: p(X) becomes p('skolem(?[A]:p(A),1)')
- · Advice using custom sparse naive Bayes
 - \cdot association of the features of the proof states
 - \cdot with contrapositives used for the successful extension steps

FEMaLeCoP: Data Collection and Indexing

- $\cdot\,$ Slight extension of the saved proofs
 - Training Data: pairs (path, used extension step)
- External Data Indexing (incremental)
 - te_num: number of training examples
 - · <code>pf_no: map from features to number of occurrences</code> $\in \mathbb{Q}$
 - \cdot cn_no: map from contrapositives to numbers of occurrences
 - cn_pf_no: map of maps of cn/pf co-occurrences
- · Problem Specific Data
 - · Upon start FEMaLeCoP reads
 - only current-problem relevant parts of the training data
 - \cdot cn_no and cn_pf_no filtered by contrapositives in the problem
 - pf_no and cn_pf_no filtered by possible features in the problem

Estimate the relevance of each contrapositive φ by P(φ is used in a proof in state $\psi \mid \psi$ has features F(γ)) where $F(\gamma)$ are the features of the current path. Estimate the relevance of each contrapositive φ by
P(φ is used in a proof in state ψ | ψ has features F(γ))
where F(γ) are the features of the current path.
Assuming the features are independent, this is:

 $P(\varphi \text{ is used in } \psi \text{'s proof})$ $\cdot \prod_{f \in F(\gamma) \cap F(\varphi)} P(\psi \text{ has feature } f \mid \varphi \text{ is used in } \psi \text{'s proof})$ $\cdot \prod_{f \in F(\gamma) - F(\varphi)} P(\psi \text{ has feature } f \mid \varphi \text{ is not used in } \psi \text{'s proof})$ $\cdot \prod_{f \in F(\varphi) - F(\gamma)} P(\psi \text{ does not have } f \mid \varphi \text{ is used in } \psi \text{'s proof})$

Naive Bayes (2/2)

All these probabilities can be estimated (using training examples):

$$\sigma_1 \ln t + \sum_{f \in (\overline{f} \cap \overline{s})} i(f) \ln \frac{\sigma_2 s(f)}{t} + \sigma_3 \sum_{f \in (\overline{f} - \overline{s})} i(f) + \sigma_4 \sum_{f \in (\overline{s} - \overline{f})} i(f) \ln(1 - \frac{s(f)}{t})$$

where

- \cdot \overline{f} are the features of the path
- $\cdot \ \overline{s}$ are the features that co-occurred with φ
- $\cdot \ t = cn_no(arphi)$
- $\cdot \ s = cn_fp_no(arphi)$
- \cdot *i* is the IDF
- \cdot σ_* are experimentally chosen parameters

SUMMARY

- · Formal Mathematics could be very interesting for AI
 - · Easy to make arbitrarily many experiments
 - And conversely: AI is very useful
- · Premise selection potential for improvement
 - · Stronger techniques too slow or not precise?
- · Internal guidance for Automated Theorem Proving
 - · Fast learning algorithm, indexing, approximate features
- · Characterization of mathematical reasoning