
Modular Architecture for Proof Advice
AITP Components

Cezary Kaliszyk

03 April 2016

University of Innsbruck, Austria

Talk Overview

� AI over formal mathematics

� Premise selection overview

� The methods tried so far

� Features for mathematics

� Internal guidance

1 / 39

ai over formal mathematics

Inductive/Deductive AI over Formal Mathematics

� Alan Turing, 1950: Computing machinery and intelligence

� beginning of AI, Turing test

� last section of Turing’s paper: Learning Machines

� Which intellectual fields to use for building AI?

� But which are the best ones [fields] to start [learning on]
with?

� ...
� Even this is a difficult decision. Many people think that a
very abstract activity, like the playing of chess, would be best.

� Our approach in the last decade:

� Let’s develop AI on large formal mathematical libraries!

3 / 39

Why AI on large formal mathematical libraries?

� Hundreds of thousands of proofs developed over centuries

� Thousands of definitions/theories encoding our abstract
knowledge

� All of it completely understandable to computers (formality)

� solid semantics: set/type theory

� built by safe (conservative) definitional extensions

� unlike in other “semantic” fields, inconsistencies are
practically not an issue

4 / 39

Deduction and induction over large formal libraries

� Large formal libraries allow:

� strong deductive methods – Automated Theorem Proving

� inductive methods like Machine Learning (the libraries are
large)

� combinations of deduction and learning

� examples of positive deduction-induction feedback loops:

� solve problems ! learn from solutions ! solve more
problems ...

5 / 39

Useful: AI-ATP systems (Hammers)

Proof Assistant Hammer ATP

Current Goal TPTP

ITP Proof ATP Proof

6 / 39

AITP techniques

� High-level AI guidance:

� premise selection: select the right lemmas to prove a new fact
� based on suitable features (characterizations) of the formulas
� and on learning lemma-relevance from many related proofs

� Mid-level AI guidance:

� learn good ATP strategies/tactics/heuristics for classes of
problems

� learning lemma and concept re-use
� learn conjecturing

� Low-level AI guidance:

� guide (almost) every inference step by previous knowledge
� good proof-state characterization and fast relevance

7 / 39

premise selection

Premise selection

Intuition

Given:

� set of theorems T (together with proofs)

� conjecture c

Find: minimal subset of T that can be used to prove c

More formally

argmin
t�T

fjt j j t ` cg

9 / 39

In machine learning terminology

Multi-label classification

Input: set of samples S, where samples are triples s ;F (s);L(s)

� s is the sample ID

� F (s) is the set of features of s

� L(s) is the set of labels of s

Output: function f that predicts list of n labels (sorted by
relevance) for set of features

Sample add_comm (a + b = b + a) could have:

� F(add_comm) = {“+”, “=”, “num”}

� L(add_comm) = {num_induct, add_0, add_suc, add_def}

10 / 39

Not exactly the usual machine learning problem

Observations

� Labels correspond to premises and samples to theorems

� Very often same

� Similar theorems are likely to have similar premises

� A theorem may have a similar theorem as a premise

� Theorems sharing logical features are similar

� Theorems sharing rare features are very similar

� Fewer premises = they are more important

� Recently considered theorems and premises are important

11 / 39

Not exactly for the usual machine learning tools

Classifier requirements

� Multi-label output

� Often asked for 1000 or more most relevant lemmas

� Efficient update

� Learning time + prediction time small
� User will not wait more than 10–30 sec for all phases

� Large numbers of features

� Complicated feature relations

12 / 39

k -nearest neighbours

k -NN

Standard k -NN

Given set of samples S and features ~f

1. For each s 2 S, calculate distance d 0(~f ; s) = k~f � ~F (s)k

2. Take k samples with smallest distance, and return their labels

14 / 39

Feature weighting for k-NN: IDF

� If a symbol occurs in all formulas, it is boring (redundant)

� A rare feature (symbol, term) is much more informative than
a frequent symbol

� IDF: Inverse Document Frequency:

� Features weighted by the logarithm of their inverse frequency

IDF(t ;D) = log
jD j

jfd 2 D : t 2 dgj

� This helps a lot in natural language processing

� Smothed IDF also helps:

IDF1(t ;D) =
1

1+ jfd 2 D : t 2 dgj

15 / 39

k -NN Improvements for Premise Selection

� Adaptive k

� Rank (neighbours with smaller distance)

rank(s) = jfs 0 j d(f ; s) < d(f ; s 0)gj

� Age

� Include samples as labels

� Different weights for sample labels

� Simple feature-based indexing

� Euclidean distance, cosine distance, Jaccard similarity
� Nearness

16 / 39

naive bayes

Naive Bayes

� For each fact f : Learn a function rf that takes the features of
a goal g and returns the predicted relevance.

� A baysian approach

P(f is relevant for proving g)

= P(f is relevant j g ’s features)

= P(f is relevant j f1; : : : ; fn)

_ P(f is relevant)�n
i=1P(fi j f is relevant)

_ #f is a proof dependency � �n
i=1

#fi appears when f is a proof dependency
#f is a proof dependency

18 / 39

Naive Bayes: first adaptation to premise selection

#f is a proof dependency��n
i=1

#fi appears when f is a proof dependency
#f is a proof dependency

� Uses a weighted sparse naive bayes prediction function:

rf (f1; : : : ; fn) = ln C +
X

j : cj 6=0

wj
�
ln (�cj) � ln C

�
+
X

j : cj=0

wj�

� Where f1; : : : ; fn are the features of the goal.

� w1; : : : ;wn are weights for the importance of the features.

� C is the number of proofs in which f occurs.

� cj � C is the number of such proofs associated with facts described
by fj (among other features).

� � and � are predefined weights for known and unknown features. 19 / 39

Naive Bayes: second adaptation

extended features F (�) of a fact �

features of � and of the facts that were proved using �
(only one iteration)

More precise estimation of the relevance of � to prove
:

P(� is used in ’s proof)

�
Y

f2F(
)\F(�)
P
�
 has feature f j � is used in ’s proof

�

�
Y

f2F(
)�F(�)
P
�
 has feature f j � is not used in ’s proof

�

�
Y

f2F(�)�F(
)
P
�
 does not have feature f j � is used in ’s proof

�

20 / 39

All these probabilities can be computed efficiently!

Update two functions (tables):

� t(�): number of times a fact � occurs as a dependency

� s(�; f): number of times a fact � occurs as a dependency of a
fact described by feature f

Then:

P(� is used in a proof of (any)) =
t(�)
K

P
�
 has feature f j � is used in ’s proof

�
=

s(�; f)
t(�)

P
�
 does not have feature f j � is used in ’s proof

�
= 1�

s(�; f)
t(�)

� 1�
s(�; f)� 1

t(�)

21 / 39

random forests

Random Forest Definition

A random forest is a set of decision trees constructed from
random subsets of the dataset.

Characteristics
� easily parallelised

� high prediction speed (once trained :)

� good prediction quality (claimed e.g. in [Caruana2006])

� Offline forests: Agrawal et al. (2013)

� developed for proposing ad bid phrases for web pages
� trained periodically on whole set, old results discarded

� Online forests: Saffari et al. (2009)

� developed for computer vision object detection
� new samples added each tree a random number of times
� split leafs when too big or good splitting features
� features encountered first are higher up in trees: bias

23 / 39

Example Decision Tree

+

�

a � (b + c) =
a � b + a � c

a + b =
b + a

sin

sin x =

� sin(�x)
�

a � b = b � a a = a

0

0 1

1

2 1

1 2

24 / 39

RF improvements for premise selection

� Feature selection: Gini + feature frequency

� Modified tree size criterion

� (number of labels logarithmic in number of all labels)

� Multi-path tree querying (introduce a few “errors”) with
weighting

w =
Y

d2errors

f (d ;m)

f (d ;m) =

8>>>><
>>>>:

w simple
w

m�d inverse

w d
m linear

� Combine tree / leaf results using harmonic mean

25 / 39

Comparison

10 20 30 40 50

20

40

60

80

100

Number of facts

C
ov
er

(%
)

knn+RF
knn
nbayes
RF

26 / 39

Other Tried Premise Selection Techniques

� Syntactic methods

� Neighbours using various metrics
� Recursive: SInE, MePo

� Neural Networks (flat, SNoW)

� Winnow, Perceptron

� Linear Regression

� Needs feature and theorem space reduction

� Kernel-based multi-output ranking

� Works better on small datasets

27 / 39

features

Features used so far for learning

� Symbols

� symbol names or type-instances of symbols

� Types

� type constants, type constructors, and type classes

� Subterms

� various variable normalizations

� Meta-information

� theory name, presence in various databases

29 / 39

Semantic Features

� The features have to express important semantic relations

� The features must be efficient

� In this work, features for:

� Matching
� Unification

� Efficiency achieved by using optimized ATP indexing trees:

� discrimination trees
� substitution trees

� Connections between subterms in a term

� Paths in Term Graphs

� Validity of formulas in diverse finite models

� semantic, but often expensive

30 / 39

guidance for atps

leanCoP: Lean Connection Prover (Jens Otten)

� Connected tableaux calculus

� Goal oriented, good for large theories

� Regularly beats Metis and Prover9 in CASC

� despite their much larger implementation
� very good performance on some ITP challenges

� Compact Prolog implementation, easy to modify

� Variants for other foundations: iLeanCoP, mLeanCoP
� First experiments with machine learning: MaLeCoP

� Easy to imitate

� leanCoP tactic in HOL Light

32 / 39

Internal Guidance for LeanCoP

Very simple calculus:

� Reduction unifies the current literal with a literal on the path

� Extension unifies the current literal with a copy of a clause

fg; M ; Path
Axiom

C ; M ; Path [fL2g

C [fL1g; M ; Path [fL2g
Reduction

C2 n fL2g; M ; Path [fL1g C ; M ; Path
C [fL1g; M ; Path

Extension

33 / 39

FEMaLeCoP: Advice Overview and Used Features

� Advise the:

� selection of clause for every tableau extension step

� Proof state: weighted vector of symbols (or terms)

� extracted from all the literals on the active path
� Frequency-based weighting (IDF)
� Simple decay factor (using maximum)

� Consistent clausification

� formula ?[X]: p(X) becomes p(’skolem(?[A]:p(A),1)’)

� Advice using custom sparse naive Bayes

� association of the features of the proof states
� with contrapositives used for the successful extension steps

34 / 39

FEMaLeCoP: Data Collection and Indexing

� Slight extension of the saved proofs

� Training Data: pairs (path, used extension step)

� External Data Indexing (incremental)

� te_num: number of training examples
� pf_no: map from features to number of occurrences 2 Q
� cn_no: map from contrapositives to numbers of occurrences
� cn_pf_no: map of maps of cn/pf co-occurrences

� Problem Specific Data
� Upon start FEMaLeCoP reads

� only current-problem relevant parts of the training data

� cn_no and cn_pf_no filtered by contrapositives in the problem
� pf_no and cn_pf_no filtered by possible features in the problem

35 / 39

Naive Bayes (1/2)

Estimate the relevance of each contrapositive ' by
P(' is used in a proof in state | has features F(
))

where F (
) are the features of the current path.

Assuming the features are independent, this is:

P(' is used in ’s proof)

�
Y

f 2F (
)\F (')
P
�
 has feature f j ' is used in ’s proof

�

�
Y

f 2F (
)�F (')
P
�
 has feature f j ' is not used in ’s proof

�

�
Y

f 2F (')�F (
)
P
�
 does not have f j ' is used in ’s proof

�

36 / 39

Naive Bayes (1/2)

Estimate the relevance of each contrapositive ' by
P(' is used in a proof in state | has features F(
))

where F (
) are the features of the current path.

Assuming the features are independent, this is:

P(' is used in ’s proof)

�
Y

f 2F (
)\F (')
P
�
 has feature f j ' is used in ’s proof

�

�
Y

f 2F (
)�F (')
P
�
 has feature f j ' is not used in ’s proof

�

�
Y

f 2F (')�F (
)
P
�
 does not have f j ' is used in ’s proof

�

36 / 39

Naive Bayes (2/2)

All these probabilities can be estimated (using training examples):

�1 ln t +
X

f2(f\s)

i(f) ln
�2s(f)

t
+ �3

X
f2(f�s)

i(f) + �4

X
f2(s�f)

i(f) ln(1�
s(f)
t
)

where

� f are the features of the path

� s are the features that co-occurred with '

� t = cn_no(')

� s = cn_fp_no(')

� i is the IDF

� �� are experimentally chosen parameters

37 / 39

summary

Summary

� Formal Mathematics could be very interesting for AI

� Easy to make arbitrarily many experiments
� And conversely: AI is very useful

� Premise selection potential for improvement

� Stronger techniques too slow or not precise?

� Internal guidance for Automated Theorem Proving

� Fast learning algorithm, indexing, approximate features

� Characterization of mathematical reasoning

39 / 39

	AI over Formal Mathematics
	Premise Selection
	k-Nearest Neighbours
	Naive Bayes
	Random Forests
	Features
	Guidance for ATPs
	Summary

