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Preface

This volume contains the abstracts of the talks presented at AITP 2016: The
First Conference on Artificial Intelligence and Theorem Proving held on April
3–7, 2016 in Obergurgl, Austria.

We have organized the first AITP because we believe that large-scale seman-
tic processing and strong computer assistance of mathematics and science is our
inevitable future. New combinations of AI and reasoning methods and tools de-
ployed over large mathematical and scientific corpora will be instrumental to this
task. We hope that the AITP conference will become the forum for discussing
how to get there as soon as possible, and the force driving the progress towards
that.

AITP 2016 consists of three focused sessions on AI for ATP, ITP and math-
ematics, a (tutorial) session on modern AI and big-data methods, and three
sessions with 9 contributed talks. The focused sessions are based on the follow-
ing 11 invited talks and discussion oriented.

– AI and large-theory ATP/ITP. Speakers: Thomas C. Hales, Cezary Kaliszyk
– AI and internal guidance of ATP. Speakers: Robert Veroff, Stephan Schulz,

Martin Suda
– AI and automated understanding of informal and semi-formal mathematics.

Speakers: Noriko Arai, Deyan Ginev, Takuya Matsuzaki, Jǐŕı Vyskočil
– Modern AI and big-data methods (tutorials and connections to ATP, ITP

and math). Speakers: Sean Holden, Christian Szegedy

We would like to thank the University of Innsbruck for hosting AITP 2016
at its conference center in Obergurgl. Many thanks also to Andrei Voronkov and
his EasyChair for their support with paper reviewing, proceedings creation, and
registration of participants.

Finally, we are grateful to all the speakers, participants and PC members for
their interest in discussing and pushing forward these exciting topics!

March 29, 2016
Pittsburgh
Innsbruck
Stuttgart
Prague

Thomas C. Hales
Cezary Kaliszyk
Stephan Schulz

Josef Urban
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Automation in the Formal Proof of the Kepler

Conjecture

Thomas C. Hales

University of Pittsburgh

Abstract. The Kepler conjecture asserts that no packing of congruent
balls in Euclidean space has density greater than the face-centered cubic
packing (the familiar pyramid packing that is used to display oranges at
the fruit-stand). This conjecture was established as a theorem in 1998
by a lengthy computer-assisted proof. In 2014, this computer proof was
formally veri�ed in the HOL Light proof assistant.
This talk will discuss some of the forms of automation that were used in
the formal proof of the Kepler conjecture and will mention further forms
of automation that might have been useful. The formal proof required
an estimated 20-work years to complete (beyond all the years that it
took to discover a proof of the Kepler conjecture in the �rst place). The
formal proof takes about 5000 CPU-hours to check.
It is not a practical matter to spend 20 years on the formalization of
every major theorem. A long-term goal in theorem proving is to develop
technology that would allow a large proportion of mathematical proofs to
be formally checked as a routine part of the publication process. With all
this in mind, I hope that this talk will lead to discussions about concrete
steps to automate more of the process of proof formalization.
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An Overview of Deep Learning

Christian Szegedy

Google

Abstract. Deep machine learning models have the interesting property

of being able to learn complex, hierarchical feature representations from

data alone. In the recent years, deep learning methods have lead to new

approaches and a large number of practical applications in a variety of

domains, especially in machine perception. These methods include vision

systems that rival humans in terms of object detection and recognition,

voice recognition systems that are widely used in cell phones and deep

learning systems make inroads in machine translation and even in com-

puter go. In this talk, I will give a short overview of the methods behind

the breakthrough results of the last few years and will give a sample a

few of the most exciting recent developments and challenges in the �eld.
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Modular Architecture for Proof Advice

Cezary Kaliszyk

cezary.kaliszyk@uibk.ac.at
University of Innsbruck, Austria

1 Introduction

Proof assistant formalization usually involves justifying many small proof steps.
Many of such proof steps are so simple, that they would not be mentioned
or explained in informal proofs. Nevertheless state-of-the-art proof assistants
require the user to spend a significant part of the formalization time on them.
Various automation techniques have been proposed, that aim to reduce this
effort. This includes includes automated reasoning techniques, as well as domain
specific solutions.

The most powerful general propose automation technique available for proof
assistants today is provided by “hammers” [3]. Hammers combine machine learn-
ing from previous proofs with automated reasoning techniques to automatically
search for proofs of user given goals. Hammers typically consist of three main
components: (i) a heuristic lemma selector (also called relevance filter or premise
selector) that chooses a subset of the accessible facts, that are likely useful for the
given conjecture, (ii) an encoding (translation) of the user given goal together
with the chosen facts to the logics and input formats of automated theorem
provers (ATPs), and (iii) reconstruction of proofs which uses the found ATP
proofs to re-prove the user goal in the logic of the proof assistant.

Robust hammers exist today for proof assistants based on higher-order logic
(Sledgehammer [5] for Isabelle/HOL [17], HOLyHammer [11] for HOL Light [8]
and HOL4 [16]), as well as set theory (MizAR [12] for Mizar [6]) and are able
to solve 40–50% of the top-level goals in the various developments [3], as well as
more than 70% of the user-visible subgoals [4], and as such has been found very
useful in various proof developments [7]. For proof assistants based on other foun-
dations, including ACL2 [13], Coq [2], Matita [1], Isabelle/ZF [14,15], only initial
hammering experiments and parts of hammers have been constructed [9,10].

In this talk, we will discuss the components needed to provide proof advice
for the various proof assistants and their foundational logics. We will propose
a more modular architecture for proof advice, where the lemma selection, proof
encoding, and reconstruction are further divided into smaller components. For
the learning phase we will propose and specify feature extraction, statement
similarity, and lemma learning components. For the encoding we will separate
the translation of dependent products, lambda-abstrations, partiality, predicate-
subterms, from the translation of the type systems. Finally we will discuss the
reconstruction options available for the various proof assistant foundations, and
propose shared components.
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Machine learning for automatic theorem proving: the
story so far

Dr Sean B Holden

University of Cambridge
Computer Laboratory

William Gates Building
15 JJ Thomson Avenue

Cambridge CB3 0FD, UK
sbh11@cl.cam.ac.uk

Keywords: Machine learning, automatic theorem proving, satisfiability (SAT),
first-order logic (FOL), higher-order logic (HOL), naı̈ve Bayes, linear regression,
support vector machine (SVM).

Abstract

One’s ability to produce proofs improves with practice. Thus it is natural to ask
whether automatic theorem provers might be strengthened by incorporating the
ability to learn using machine learning techniques. This question has been widely
addressed in the simplest form of theorem-prover — that aimed at solving propo-
sitional satisfiability (SAT) problems — usually using quite basic learning algo-
rithms. There has until recently been relatively little success in applying learning
to first-order or higher-order provers, but in recent years work has begun to appear.
We provide an introduction to the work to date, including a brief introduction to
the most commonly employed learning algorithms.
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Induction Controlling Deduction

Stephan Schulz

DHBW Stuttgart
schulz@eprover.org

Abstract

First-order theorem provers search for proofs of a conjecture in an infinite and highly
branching search space. This search critically depends on good heuristics. Unfortunately,
designing good heuristics for the different choice points and classes of problems for has
proved to be very hard. Indeed, even classification of proof problems into classes with
similar search behaviour is a largely open research question.

One way to address the difficulty of controlling search is to use inductive approaches,
i.e. to try to find good heuristics by observing and generalizing examples of successful and
failing proof searches. Here we discuss the three major choice points for superposition-
based provers, and how good heuristics can be found via inductive processes.

We distinguish two different learning paradigms. In the first case, only the perfor-
mance of different heuristics on a test set is used as input for the inductive process. Two
examples for this are the automatic generation of automatic modes for theorem provers,
and the improvement of clause evaluation heuristics via parameter optimization or genetic
algorithms. The second paradigm not only considers the performance of a heuristic, but
tries to find new heuristics by analyzing proofs, or, more generally, a graph of the proof
search.

We give some results on established work, and discuss some preliminary progress and
open questions from ongoing work.

References
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[3] Simon Schäfer and Stephan Schulz. Breeding theorem proving heuristics with genetic algorithms.
In Georg Gottlob, Geoff Sutcliffe, and Andrei Voronkov, editors, Proc. of the Global Conference on
Artificial Intelligence, Tibilisi, Georgia, volume 36 of EPiC, pages 263–274. EasyChair, 2015.

[4] S. Schulz. Learning Search Control Knowledge for Equational Theorem Proving. In F. Baader,
G. Brewka, and T. Eiter, editors, Proc. of the Joint German/Austrian Conference on Artificial
Intelligence (KI-2001), volume 2174 of LNAI, pages 320–334. Springer, 2001.

[5] S. Schulz. E – A Brainiac Theorem Prover. Journal of AI Communications, 15(2/3):111–126, 2002.
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CLAUSE SELECTION IN RESOLUTION-STYLE THEOREM

PROVERS

ROBERT VEROFF

Abstract. The search for a proof in a resolution-style theorem prover can

effectively be reduced to the problem of selecting clauses for the application
of inference rules. This talk will be an overview of clause selection methods

that are common to automated theorem provers such as Prover9. Such meth-

ods include weighting, attribute-based selection, model-based selection and
subsumption-based selection.

Weighting (heuristic evaluation) assigns a score to a clause predicting the

likelihood that the clause will participate in a proof of a candidate theorem.
User-defined weighting functions allow a user to impose intuition, knowledge

or preferences on a search. Attribute-based selection, such as the set of support

strategy, can be used to restrict the application of inference rules, effectively
narrowing a search. In model-based selection, the evaluation of clauses under

user-supplied models can be used to further focus a search. Subsumption-
based selection is another way for a user to impose intuition, knowledge or

preferences on a search. In this case, the priority of clauses can be adjusted if

they match user-supplied hint clauses.
The hints mechanism is the foundation of a higher-level strategy–the method

of proof sketches–where sequences of theorem proving runs are used to system-

atically narrow the search for a proof. Proof sketches have been used effectively
to solve numerous open questions in mathematics and logic.

The proof sketches method is still evolving. For example, we find that

in larger ongoing studies, as the number of accumulated hints increases, the
prover can get bogged down and become ineffective. We are beginning to look

at machine learning and other methods to help manage and prioritize hints.

Department of Computer Science, University of New Mexico, Albuquerque, New

Mexico 87131, U.S.A.

E-mail address: veroff@cs.unm.edu

URL: http://www.cs.unm.edu/~veroff
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When Should We Add Theory Axioms
And Which Ones?

Giles Reger and Martin Suda

University of Manchester, Manchester, UK

Abstract. One approach to first-order reasoning in the theory of arithmetic is
to partially axiomitise the theory. For example, if an input problem uses the in-
terpreted sum operation then one could add axioms stating that the operation is
symmetric and has identity zero. For obvious reasons it is not possible to add all
necessary axioms. However, it may also be counter-productive to add all obvious
axioms. For example, the symmetry axiom for sum is highly prolific in saturation-
based methods and may not be necessary for solving the input problem. This talk
presents a work-in-progress study applying machine learning to the problem of
selecting which theory axioms to add given an input problem. The work is being
carried out within the context of the Vampire theorem prover. The problem and
the approach taken so far will be explained and some initial results given.
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Can a machine solve university entrance exam math problems 

automatically? 

 

Noriko H. Arai 

arai@nii.ac.jp 

National Institute of Informatics 

 

“Todai Robot Project (Can an AI get into the University of Tokyo?)” was initiated by 

National Institute of Informatics in 2011 as an AI grand challenge. The goal of the 

project is to create an AI system that answers real questions of university entrance 

examinations. The task naturally requires the interdisciplinary research synthesis. For 

example, our math problem solving machine requires novel fusion of natural language 

processing, automated theorem proving and computer algebra. 

In 2015, our software took a mock test of the National Center Test (standardized 

multiple-choice style test) with more than 0.4 million high school students. The results 

showed that its ability was still far below the average entrants of the University of 

Tokyo. However, it was among top twenty percentages of all the examinees: it was 

competent to pass the entrance exams of 474 out of 750 universities in Japan. 
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Solving Natural Language Math Problems 

 

Takuya Matsuzaki 

Nagoya University 

 

Abstract 

We have been developing a system that is capable of solving pre-university level math 

problems written in natural language. The system takes a problem text encoded as an 

XML as the input. Then it translates a whole problem to a logical formula through 

several steps of natural language processing (NLP). The formal representation of a 

problem is further rewritten to find its representation in a local theory such as real closed 

field (RCF) and peano arithmetic (PA). Finally, an answer is deduced by applying 

automated reasoning (AR) techniques including computer algebra and theorem proving. 

In the talk, I will explain why it matters both to NLP and AR and describe several 

technical problems that have come about from the intersection of (or, the gap between) 

the two worlds. 
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Math-rich Natural Language Processing (NLP)

on Billion Token Corpora

Deyan Ginev

Jacobs University Bremen

March 21, 2016

Abstract

Analyzing mathematical natural language has a high entry barrier,
due to challenges of licensing, representation, and processing at scale.

Additionally, the interplay between the modality of mathematical sym-
bolism and natural language often requires redesign of any existing state-
of-the-art solutions. Examples are core problems in the field of compu-
tational linguistics, which are largely considered solved for newswire and
biomedical texts, such as part-of-speech (POS) tagging and named entity
recognition (NER).

A third outstanding core challenge is the lack of availability of “gold
standard” datasets, traditionally used for the training and evaluation of
learned models and analysis techniques. Here again, the family of classic
annotation tasks needs to be extended to mathematical expressions.

In this talk I will share the experience the KWARC research group
has had in working on these problems over the last decade, and suggest
potential next steps to ensure open collaborations and reproducible and
verifiable results in the domain of math-rich NLP.

Our main corpus of investigation has been Cornell’s e-Print archive,
arXiv.org. The HTML5 conversion of arXiv tentatively contains over 4.2
billion words and over a third of a billion formulas, found in the paragraphs
of just under a million scientific articles, as of March 2016.

1
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Probabilistic Parsing of Mathematics

Ji°í Vysko£il?

Czech Technical University in Prague

Abstract. One of the �rst big hurdles that mathematicians encounter

when considering writing formal proofs is the necessity to get acquainted

with the formal terminology and the parsing mechanisms used in the

large ITP libraries. This includes the large number of formal symbols,

the grammar of the formal languages and the advanced mechanisms in-

strumenting the proof assistants to correctly understand the formal ex-

pressions in the presence of ubiquitous overloading.

In this work we start to address this problem by developing approximate

probabilistic parsing techniques that autonomously train disambiguation

on large corpora. Unlike in standard natural language processing, we can

�lter the resulting parse trees by strong ITP and AR semantic methods

such as typechecking and automated theorem proving, and even let the

probabilistic methods self-improve based on such semantic feedback. We

describe the general motivation and our �rst experiments, and build an

online system for parsing ambiguous formulas over the Flyspeck library.

? Supported by ERC Consolidator grant nr. 649043 AI4REASON. This talk describes

joint work with Cezary Kaliszyk and Josef Urban.

Page 17 of 43



Revisiting Paulson’s Theory of the Constructible Universe

with Isar and Sledgehammer

Ioanna M. Dimitriou H. and Peter Koepke

Mathematics Insitute, University of Bonn, Germany
dimitri@math.uni-bonn.de

koepke@math.uni-bonn.de

Lawrence Paulson’s Isabelle formalization of Gödel’s relative consistency result for the Ax-
iom of Choice stands out as an early formalization of a long and sophisticated theory including
a general introduction to Zermelo-Fraenkel set theory. The metamathematical aspects of the
theorem and its proof present veritable challenges. We are currently pursuing a project to
understand and revise the formalization into a more “readable” form, in parallel with modern
introductions to set theory and constructibility theory. Eventually methods of the Naproche-
project (Natural proof checking) will be brought in to obtain a natural language layer on top
of the new Isabelle text. We hope that such endeavours will facilitate the public acceptance of
formal mathematics.

Isabelle and the formalisation of the relative consistency of AC. In 1938, Gödel
proved the relative consistency of the Axiom of Choice (AC) [Göd40] relative to the axioms
of Zermelo-Fraenkel (ZF) set theory. He introduced the constructible universe, L, which is a
minimal model of the standard axioms of set theory, and proved that the Axiom of Choice and
the Generalised Continuum Hypothesis (GCH) are valid in L. The proofs involve sophisticated
combinatorial as well as metatheoretic arguments. In 2003, Paulson formalised Gödel’s proof of
the relative consistency of AC in Isabelle [Pau03], thus providing a formalised proof of a large
scale metamathematical theorem.

Isabelle is a powerful modern interactive proof assistant, which includes the proving lan-
guage Isar (Intelligible semi-automatic reasoning) that covers a great distance towards a more
naturalised style for formal proofs. Isabelle’s core is based on a very minimal higher order logic
(Pure), but it is distributed with and supports a wide variety of logics, its main branch being
higher order logic (HOL). Since its creation in 1986, Isabelle has become an established system
for formal proving and has a large library of formalised mathematics [AFP].

In order to formalise Gödel’s proof in first order logic (FOL), Paulson together with Coen,
Grabczewski, and Nipkow, developed a ZF-set theory. Building upon the non-AC theories of
this ZF-branch, Paulson formalised the key concept of the proof, the reflection metatheorem,
which he presents as five theorems in the ZF-language, corresponding to the five steps of an
induction on formula complexity, and he also uses relational counterparts for complex set the-
oretic “terms”, and other intricate constructions. This ZF-branch and, as a result, the theories
around this seminal metamathematical formal proof, are not longer at the centre of the Isabelle
development. Instead, the HOL-branch has gained a lot of attention, and Isabelle’s community
has developed useful and powerful tools, to aid novices as well as experts in formal proving.

Naturalising Isabelle with Sledgehammer as AI. In Bonn we are currently pursuing the
project of “naturalising Isabelle”. This involves reformalising existing theories in Isar, with a

1
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Revisiting Paulson’s Theory of L with Isar and Sledgehammer Dimitriou and Koepke

view towards natural mathematical text flow and argumentation, and combining the Isar lan-
guage with our linguistic experiences from the Naproche project [Nap] [Cra13] on shorter texts,
in order to provide an expressive mathematical CNL, typeset naturally for a mathematician in
LATEX. In this setting we develop a set theory within Isabelle/HOL, in which we will reformalise
Paulson’s proof of the relative consistency of AC. It is very important to pay close attention to
certain metamathematical aspects involving AC. What we need to prove is that ZF proves in
FOL that L is a model of AC, and that the background HOL does not introduce fragments of
AC implicitly in the proof.

For Isabelle/HOL, the highly successful tool Sledgehammer [PB10] is available, which can
find relevant theorems, translate typed higher order statements into first order logic statements
and feed them to powerful first order theorem provers, such as E, Vampire, and SPASS. By
dropping the strict requirement of type soundness, Sledgehammer returns suggestions faster
than the actual complexity of this problem would allow, thus modelling, in a way, a “human
reader”, allowing the steps between the explicitly given statements in a proof to become big-
ger, like in standard textbook proofs. With this tool, the intelligible proving language Isar,
our Naproche experiences, and with the concise HOL-arguments, we aim to create a natural
presentation of ZF, of Paulson’s formalisation, and of further “natural formal mathematics”.

We view our project as a contribution towards the QED manifesto [QED94], about which
Wiedijk said in [Wie07]:

The other reason that there has not been much progress on the vision from the QED
manifesto is that currently formalized mathematics does not resemble real mathe-
matics at all. Formal proofs look like computer program source code. For people
who do like reading program source code that is nice, but most mathematicians, the
target audience of the QED manifesto, do not fall in that class.

The Naproche project has shown that mathematical texts can be reformulated naturally
and formally at the same time. In the current project we want to extend this experience to
large texts, supported by a strong established system.
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Abstract
We discuss options to integrate machine learning into the automated theorem prover Satallax and

show some preliminary experimental results.
Satallax is a higher-order automated theorem prover developed by Chad Brown [Bro12].

Its proof search puts commands with a certain delay onto a priority queue and executes the
commands sorted by ascending delay. The delay for each command is calculated via a set of
customisable flags. Our goal is to reduce the time needed to find a proof by learning from
previous proof data and influencing the command priorities accordingly.

Related work includes the theorem provers MaLeCoP [UVŠ11] and FEMaLeCoP [KU15],
which are versions of leanCoP [Ott08] extended by internal guidance. FEMaLeCoP influences
the selection of contrapositives at every tableau extension step, based on the current path and
which contrapositives were useful at which paths in previous proofs. Such an approach is not
directly applicable in Satallax, because Satallax does not use paths, but rather a monotonically
growing set of terms. Furthermore, where in leanCoP’s calculus we only need to choose between
a constant set of input contrapositives for extension steps, in Satallax the set of commands to
evaluate is not known at the beginning of the proof.

While there are 11 types of commands in Satallax 2.7 (such as mating and confrontation),
the command to process a term (called “ProcessProp1”) usually makes for more than 90% of
commands generated during proof search. Therefore, we concentrated on this command to guide
proof search.

In a first approach, we implemented term weighting, a technique present for example in
E-prover [Sch13] that gives higher relevance to smaller terms. In a first evaluation, this made
the proving process slower and actually reduced the number of proven problems, but a change
of the parameters and of the weighting scheme might improve this situation in the future.

In a second approach, we regarded the symbols (i.e. constants) of all previously processed
terms as features and all symbols of the current term as labels. We recorded all features and
labels for every term processed in a proof, and differentiated whether the term contributed to
the proof. For this, we chose a two-pass solution: In a first pass, we run Satallax with a timeout
and record the set of refutation terms when a proof was found. If a proof was found during the
first pass, we rerun Satallax without timeout (to prevent that recording learning information
makes Satallax time out) and store features and labels for all terms, marking those present
among the refutation terms as positive and the others as negative examples.

We then convert the learning data to a format that allows fast evaluation of new terms
via a Naive Bayesian classifier with inverse document frequency (IDF), similarly as done in
FEMaLeCoP: In contrast to a usual Bayesian classifier, where one wishes to retrieve a set of
labels fitting an input set of features, our classifier is optimised to quickly answer the question
how well a certain given label fits a set of features.

The Bayesian classifier is then loaded into Satallax and influences the priority of terms by
obtaining the features of previously processed terms (which are cached for performance reasons)
and running a Bayesian classification of all term labels, summing up the results. Based on the
score from the classifier, we give a higher or smaller delay to the term. We chose the parameters

1

Page 20 of 43



Machine learning in Satallax M. Färber, C. Brown

of the classifier via an off-line evaluation of existing proofs, by calculating for every proof-relevant
term the number of irrelevant terms with a higher priority assigned by the classifier.

On a first evaluation on a higher-order version of the Mizar dataset (kindly provided by
Josef Urban), this second approach did not fare so well, only proving a few more problems than
without learning. Furthermore, a new problem emerged, namely that the Bayesian priorities
assigned to the terms were so high that they completely pushed other commands, such as mating,
to the very end, thus delaying them too much.

For these reasons, we tried a third approach, where we completely disregard the current
prover state and base internal guidance just on the terms encountered in previous proofs: Based
on how often a term appeared in previous proofs and how often it contributed to a proof, we
determine its priority. An important observation that led to this approach was that the terms
appearing in Satallax proofs were in almost all cases either always relevant or always irrelevant –
there were hardly any “controversial” terms. We evaluated on the HOL version of the Mizar
dataset (902 problems) with the single best-performing Satallax mode (mode483) and a timeout
of 1 second. The parameters of the machine learning were optimised via a particle swarm [KE95].
This approach has been so far the most successful, yielding up to 19 new solved problems to a
set of 529 solved problems (+3,6%).

The presented approaches learn only data for given symbols, therefore proof knowledge of a
certain theory does not help in a different theory whose symbols are all different. It would be
interesting to abstract terms and symbols such that proof knowledge could be shared among
different theories. We will continue improving the machine learning techniques presented, as
well as trying new methods such as Bayesian classification of terms instead of term symbols.

Supported by the ERC Consolidator grant nr. 649043 AI4REASON.

References
[Bro12] Chad E. Brown. Satallax: An automatic higher-order prover. In Automated Reasoning

- 6th International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012.
Proceedings, pages 111–117, 2012.

[KE95] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE International
Conference on Neural Networks, volume 4, pages 1942–1948, Nov 1995.

[KU15] Cezary Kaliszyk and Josef Urban. FEMaLeCoP: Fairly efficient machine learning
connection prover. In Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR’15), LNCS, 2015. to appear.

[Ott08] Jens Otten. leanCoP 2.0 and ileanCoP 1.2: High performance lean theorem proving in
classical and intuitionistic logic (system descriptions). In Automated Reasoning, 4th
International Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008,
Proceedings, pages 283–291, 2008.

[Sch13] Stephan Schulz. System description: E 1.8. In Logic for Programming, Artificial
Intelligence, and Reasoning - 19th International Conference, LPAR-19, Stellenbosch,
South Africa, December 14-19, 2013. Proceedings, pages 735–743, 2013.

[UVŠ11] Josef Urban, Jiří Vyskočil, and Petr Štěpánek. MaLeCoP machine learning connec-
tion prover. In Automated Reasoning with Analytic Tableaux and Related Methods -
20th International Conference, TABLEAUX 2011, Bern, Switzerland, July 4-8, 2011.
Proceedings, pages 263–277, 2011.

2

Page 21 of 43



Conjecturing over Large Corpora
Thibault Gauthier1, Cezary Kaliszyk1, Josef Urban2∗, and Jǐŕı Vyskočil2
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Abstract

We propose automated methods, learning from large libraries of formalized theorems, to
generate plausible formulas. The discovery of interesting conjectures in multiple domains
demonstrates the generality of our approach for exploring mathematical theories.

A critical part of the work of a mathematician is the process of conjecture-making during
which the researcher observes and find patterns in and between mathematical objects. The
observed regularity is transformed into formalized conjectures that describe or better explain
the behavior of the objects.

Computer scientists have since long tried to reproduce this process automatically, but the
most successful methods were restricted to a specific domain such as graph theory [1], num-
ber theory [3] and algebra [2]. During the last four decades, a large number of theories were
formalized inside interactive theorem provers(ITP). The most popular ones, Mizar [10], Is-
abelle/HOL [11] and Coq [4], provide many automated tools for theorem proving, however the
assistance users can obtain for making conjectures in the large-theory context is still limited to
non-existent.

We believe that good conjecturing is an essential step for automation of harder proofs in
ITPs, therefore we propose several methods for generating conjectures over large libraries. In
particular, the methods need to answer two questions: (i) what are interesting conjectures, and
(ii) how to find them efficiently and quickly reject bad conjectures.

library patterns
learning

formulas
generation

conjectures
pruning

proving

Figure 1: Self-improving conjecture generation loop

A frequent drawback of existing general-purpose conjecturing methods [7, 12] is that they
try to define exactly what interesting means only by a series of hand-crafted rules that are often
used exhaustively. Large-theory reasoning methods are today usually data-driven, i.e., using
guidance extracted from the large libraries. We would like to find such data-driven/learning
methods useful for guiding the conjecturing process. Such methods should be combined with
fast pruning mechanisms that will allow to quickly focus on the nontrivial conjectures. Once
the number of conjectures is small enough, an automatic proof search can be performed on each
of them. The newly discovered theorems can enrich the libraries that can be further learned
from. This will likely influence the next learning and pruning steps. A schematic representation
of this self-improving loop is shown in Fig 1.

∗Supported by ERC Consolidator grant nr. 649043 AI4REASON.
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Conjecture generating methods:

Statistical Analogy: We have developed a procedure for statistical/semantic matching of
concepts between different libraries based on the HOL logic [5]. The concepts are characterized
by the (statistically weighted) vector of abstracted patterns of lemmas that hold about them.
The closer such characteristic vectors, the stronger the match between the concepts. This
matching allows to heuristically translate and transfer lemmas from one terminology to another,
and to try to prove such conjectures in the other library. We have initially tried to apply this
procedure also to just one (Mizar) library, by forbidding the obvious strongest match of each
concept to itself. The initial experiment generated some interesting provable conjectures that
were not yet in the library, e.g., by exploring the strong duality between ∪ and ∩. We want to
further develop this method by abstracting not just over symbols but also over whole subterms,
and running it over the whole Mizar and other libraries [6].

Exploring concept hierarchies: Mizar has large subtyping hierarchies, e.g., every real number
is also complex. We can statistically measure the likelihood that a lemma generalizes to the
wider concept, and use such likelihoods for conjecturing. The hierarchies can be more compli-
cated and in general concern all (monadic) predicates in logics that do not allow subtyping.

Probabilistic formula generation by (dis)ambiguation: We have recently started to extract
probabilistic context-free grammars (PCFGs) and context-aware grammars from the large li-
braries that allow statistical parsing of ambiguous formulas [9]. This has already produced a
number of “wrongly parsed” ambiguous formulas that are actually provable (and new). This
can be leveraged, e.g. in the following way. A formula is first ambiguated, e.g. by using + in-
stead of real plus, forgetting variable types etc. Such ambiguous symbols are often high-level
concepts such as abstract group addition, etc. When we vary the interpretation of various parts
of such ambiguous formulas (e.g., interpreting all variables as abstract group elements) and
run the probabilistic parser on such partially disambiguated formulas, we will quite naturally
produce interpretation of the ambiguous formula (“idea”) in the changed context [8].

Genetic modification: The “wildest” mechanism that requires good fitness functions and fast
evaluation are genetic algorithms for evolving formula trees. As in the PCFG-based mechanisms,
we can apply a lot of semantic pruning when doing crossover and mutation – for example a
crossover with wrongly typed arguments might not be generated or repaired. The genetics can
also be seeded in various ways by the probabilities obtained in the previous methods.

Pruning methods:

Types: A simple pruning method is to require type consistency, using the various notion of
types in the particular proof assistants. This helps a lot already in the probabilistic disam-
biguation task.

Finite Models: The MaLARea system [13] has a finite-model generating loop, which can
relatively quickly generate a large number of useful models fo a large library. Evaluation of
formulas in such pool of models is typically fast, and the resulting characteristic vectors (of
evaluations) be used for quick checking of the validity and semantic similarity of the generated
conjectures.

Theories as Models: When a conjecture concerns abstract fields, it is useful to check whether
it holds in the fields of real or complex numbers. Often a conjecture can be quickly rejected
or repaired by checking in particular theory instantiations. Again, the large libraries provide
a number of such theory instantiations – this kind of checking is in some sense dual to the
hierarchy-based conjecture generation (which goes in the opposite direction – from an instance
to its generalization).
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PseudoModels: Even when we do not have a particular finite model or a quickly decidable
instance of a theory, there might be imprecise methods such as deep neural networks trained
on the large libraries that can quickly estimate the (in)validity of a particular conjecture. It
would be quite interesting to see how good such methods can be in various domains.
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Abstract

Many saturation based theorem provers are build around an inference loop where new clauses are

produced by applications of inference rules. Selection of clauses participating in the inference pro-

vides the main source of non-determinism and an important choice-point of the loop. E prover is a

state-of-the-art theorem prover fitting the above description. We propose to extend the E prover by

adopting methods of clause selection successfully used in practice, namely, semantic clause features

and learning-based guidance.

1 Large Theories and Given Clause Selection

First-order automated theorem provers (ATPs) aim to decide the validity of an input conjecture
C within a given theory T . Saturation-based ATPs search for a contradiction by generating
clauses deducible from T extended with the negation of C. Deducing the contradiction from
T ∪ {¬C} is equivalent to proving conjecture C in theory T .

Many state-of-the-art saturation-based ATPs use the given clause algorithm exemplified by
Otter [3]. The input problem T ∪ {¬C} is translated into a logically equivalent set of clauses.
Then the search for a contradiction, represented by the empty clause, is performed maintaining
two sets: the set P of processed clauses and the set U of unprocessed clauses. Initially, all the
input clauses are unprocessed. The algorithm repeatedly selects a given clause g from U and
generates all possible inferences using g and the processed clauses from P . Then, g is moved to
P , and U is extended with the newly produced clauses. This process continues until the empty
clause is inferred, or P becomes saturated, that is, nothing new can be inferred (U = ∅).

The search space of this loop grows quickly. Several methods can be used to make the proof
search more efficient. The search space can be narrowed by adjusting (typically restricting) the
inference rules, pruned by using forward and backward subsumption, reduced by pre-selecting
relevant input clauses, or otherwise simplified. One of the main sources of non-determinism
affecting effectiveness of the search is the selection of the given clause. Clever selection mech-
anism can improve the search dramatically: in principle, one only needs to do the inferences
that participate in the final proof. So far, this is often only a tiny portion of all the inferences
done by the ATPs during the proof search.

In our work, we consider E [5], a high-performance equational ATP for first-order logic
with equality. E uses resolution and paramodulation inference rules within the given clause
algorithm. We propose to use methods based on clause features and learning-based guidance to
improve the given clause selection in E.

2 Clause Features and Learning-based Guidance

There are already several ATP methods that characterize clauses by their specific properties
called features and use such features in various ways. E prover uses feature vectors [6] for clause
indexing in an efficient implementation of forward and backward subsumption. Given clause c,
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E uses the following clause features: the number of positive or negative literals in c (denoted
|c+| and |c−|), the number of occurrences of symbol f in positive or negative literals (|c+|f
and |c−|f ), and the depth of the deepest occurrence of symbol f in positive or negative literals
(df (c+) and df (c−)).

Another successful use of features is due to Kaliszyk et al. [2] where features are used to train
a machine learner for selection of relevant axioms from a large theory. Such features include
the set of symbols of a clause (SYM), the set of all subterms with unified variables (TRM0),
the set of all subterms with de Bruijn normalized variables (TRMα), various sets of generalized
terms (MAT ), term walks (PAT), substitutions tree nodes (ABS), and the set of all unifying
terms (UNI).

Another feature-aware method related to our purposes is the (Fairly Efficient) Machine
Learning Connection Prover (FE)MaLeCoP [1, 7]. (FE)MaLeCoP is a Tableaux -based theorem
prover where the main source of non-determinism is the selection of the best clause in a Tableaux
expansion step. The importance of this step is comparable to the selection of a given clause in
saturation-based theorem provers. (FE)MaLeCoP is equipped with a machine learning system,
which can be used to advice the clause selection for Tableaux expansion. The machine learning
system is trained on the pairs of proof state features and the corresponding clauses that were
part of the previous successful proofs.

3 Proposed Given Clause Selection Refinements

We propose to implement heuristics for E prover, which utilize various clause features and
learning-based guidance. E prover comes with various heuristics, which can be used to influ-
ence the given clause selection algorithm by assigning different weights to the participating
clauses. E prover then prefers clauses with lower weights. One of the very useful heuristics is
ConjectureRelativeSymbolWeight, which uses goal-directed evaluation to prefer clauses that
have a stronger symbolic connection to the conjecture.

As the first step, we propose to extend the ConjectureRelativeSymbolWeight heuristics to
use more advanced clause features. Currently, the heuristic measures the connection of a clause
to the conjecture by considering symbols the clause has in common with the conjecture. In the
large-theory axiom-selection problem, symbol-based metrics are quite significantly improved by
the more advanced (sub)term-based features, especially if they also consider semantic relations
like matching [2]. E already has a lot of the necessary infrastructure: (sub)terms in clauses are
normalized and shared in termbanks, making it easy to detect (sub)term overlap. Also, E has
efficient discrimination trees, whose nodes we plan to use (as in [2]) as the matching features.

As a second step, we propose to extend the above heuristics with learning-based guidance
analogous to (FE)MaLeCoP. Such guidance seems more challenging in the saturation-based
setting, because the notion of a proof state is not as clear and compact as in the tableaux
setting. We plan to experiment with various efficient definitions of the proof state. The simplest
one is the static one already used by the conjecture-oriented E heuristics – the “proof state”
is just the conjecture. But instead of just measuring the feature overlap with the conjecture,
we will learn clause relevance for the particular conjecture features from many related proofs.
There are (at least) two ways how to practically do this. (1) Putting the learning-based clause
evaluator directly into E as in (FE)MaLeCoP or in Schulz’s PhD work, which used pattern-
based guidance [4] (similar also to Veroff’s hints [8]). Or (2) just estimating the feature (symbol,
(sub)term, etc.) weights before the loop starts, based on the conjecture features and the previous
proof traces, and using (possibly further modified) weighting mechanisms already available
in E. This can be further extended to estimating good term orderings and other important
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parameters. Later we would like to consider also more dynamic proof-state features for the
learning and clause selection. This could be various metrics based either on absolute criteria
such as the proportion of short (“good”) clauses and their distribution, or also more learning-
based metrics, such as the number/proportion of already derived clauses that were needed in
related proofs, etc.
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Kai Brünnler and George Metcalfe, editors, TABLEAUX, volume 6793 of LNCS, pages 263–277.
Springer, 2011.

[8] Robert Veroff. Using hints to increase the effectiveness of an automated reasoning program: Case
studies. J. Autom. Reasoning, 16(3):223–239, 1996.

3

Page 27 of 43



Loops and the AIM Conjecture: History and Progress
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The fact that the inner automorphism group Inn(G) of a group G is isomorphic to the quotient of G by
its center Z(Q) implies the essentially trivial observation that Inn(G) is abelian if and only if G is nilpotent
of class at most 2. For a loop Q with inner mapping group Inn(Q), class 2 nilpotency is indeed sufficient
for Inn(Q) to be abelian, but the existence of what are now known as loops of Csörgő type show that the
condition is not necessary. All known examples of loops Q of Csörgő type have certain features in common:
the quotient Q/Nuc(Q) is an abelian group and Q/Z(Q) is a group. These properties certainly imply that
Q has nilpotency class at most 3, but in fact, they are stronger properties. In addition, if we define the
(conventional) commutator [·, ·] by the equation xy · [y, x] = yx, then, when Inn(Q) is abelian, this binary
operation is associative. In groups, it is a classical result of Levi that associativity of the commutator is
equivalent to nilpotence of class 2.

These observations about the known examples have led to a conjecture which I have been working on
and publicizing for several years:

AIM Conjecture: Let Q be a loop. The following are equivalent:

1. Inn(Q) is an abelian group;

2. Q/Nuc(Q) is an abelian group, Q/Z(Q) is a group and the commutator is associative.

What is not obvious from this high level discussion is that the formulation of the problem can, in fact,
be given in purely equational terms. The efforts of myself and Bob Veroff have been aimed (pun intended)
at resolving this conjecture using Prover9 and other tools.

“(2) implies (1)” is now known to hold in general. For “(1) implies (2),” the associativity of the commu-
tator has been proven, but the rest remains open in general. For many classical varieties of loops, such as
Moufang, Bol, automorphic and others, “(1) implies (2)” has been established.

This talk will be about the AIM Conjecture, its history and some of its interesting generalizations and
extensions, and its current status. I will speak about this from a mathematician’s perspective, and no
background in loop/quasigroup theory will be assumed. For the expected audience, I will describe how the
problem is formulated in the ATP context.

The different facets of this project are joint work with various combinations of people, especially Bob
Veroff who has been involved in all of it.
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Abstract

We investigate possibilities to utilize techniques of computational logic for scholarly editing. Seman-

tic Web technology already makes relevant large knowledge bases available in form of logic formulas.

There are several further roles of logic-based reasoning in machine supported scholarly editing. KBSET,

a free prototype system, provides a platform for experiments.

1 Introduction – Knowledge Bases, TEI and Beyond

Much of the background material used today in scholarly editing is available electronically in
form of large knowledge bases. Some of these emerge from the archive, library and museum
communities, for example Gemeinsame Normdatei (GND)1, which provides about 120 million
facts on approximately 11 million entities such as persons, institutions and works, and Kalliope2,
which provides meta data on collections of personal papers and manuscripts, linking them with
GND. Other relevant large knowledge bases have a more general scope, for example GeoNames
about locations or YAGO [6] and DBpedia [9], which combine extracts from various sources,
including Wikipedia. Outcomes of scholarly editing include electronic documents that may
again be considered as providing knowledge bases. The prevailing technology to realize all these
knowledge bases is the Semantic Web as advocated by the W3C, characterized by ontologies,
global identifiers (URIs) and subject-predicate-object statements with RDF.

The XML-based document markup conventions Text Encoding Initiative (TEI) [11] rep-
resents the best developed machine support for scholarly editing today. Main objectives are
rendering for different media and extraction of metadata. URIs as attribute values of markup
elements are supported to provide rudimentary connections with knowledge bases. From today’s
perspective, several demands by scholarly editing are out of the scope of TEI. This includes in
particular the incorporation of advanced and automated semantics related techniques such as
named entity recognition or statistics-based text analysis, the advanced use of relationships to
external knowledge bases and to formal semantics, and the coupling of object text with associ-
ated information in ways that are more flexible than in-place markup. Also the generation of
high-quality print or hypertext presentations based on TEI are quite expensive undertakings.

We approach these demands here from the view of computational logic. With Semantic
Web technology, large fact bases can simply be considered as sets of logic facts. Logic lan-
guages have various further potential roles in machine supported scholarly editing, such as
specifying properties and values associated with texts, specifying collections of text and pieces
of text to which these relate, specifying knowledge sources and their combination and specifying
inferences involved in automated computation of information to be associated with texts. We
discuss various points that are arising there. Aspects of this interdisciplinary work have been
recently presented to the scholarly editing community [7]. To clarify precise requirements of
machine support for scholarly editing and to experiment with advanced techniques, the authors
implemented the experimental platform KBSET.

1http://www.dnb.de/gnd.
2http://kalliope-verbund.info/.
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2 Arising Issues

Three phases can be identified for machine assisted scholarly editing: (1) Creating the enhanced
object text; (2) Generating intermediate representations for inspection by humans or machines;
(3) Generating consumable presentations. Support for all of them should be of high quality,
professional and at the state of the art, implying the inclusion of specialized techniques and
systems as well as the combination of automated techniques with information and adjustments
provided by humans. The latter aspect is an essential difference from conventional programming
and query languages. Relevant techniques include non-monotonic reasoning, semantics-based
knowledge partitioning [14, 5, 3, 8] and the provision and use of explanations for inferred
information, as exemplified by proofs in mathematical knowledge bases [13].

Statistics-based techniques, which are essential for many natural language processing oper-
ations, have to be combined with a symbolic framework. “Ranked sets”, sets whose elements
are ranked on the basis of associated feature tuples – like the familiar result sets returned by
Web search engines – seems useful as data structure to mediate between the two paradigms.

Annotations in external documents – instead of in-place markup – are facilitated by powerful
techniques to identify places in text – based on syntactic as well as semantic properties.

Scholarly editing involves the association of various forms of epistemic status with facts,
which is interesting to model formally. For example, a creation date associated with written
communication can be given by its author or can be inferred – by the editor or by a machine,
can be only partially specified by the author, can be specified with a certain precision, etc.

Efficient access to large knowledge bases requires caching and preprocessing, which ideally
should be performed automatically on the basis of the queries performed by the knowledge
processing engine. Relevant techniques come from optimization in databases [12] and first-
order model computation [10]. In particular, recent approaches to view-based query processing
[2] with variants of Craig’s interpolation and second-order quantifier elimination [12, 1, 15] seem
useful to automate the conversion from application neutral representations such as RDF fact
bases to access-oriented representations.

3 The KBSET System – An Experimental Platform

The objective of the KBSET 3 system is to make requirements precise and to investigate the
discussed issues and possibilities. Currently these are realized only in part. So far, the system
has been applied for a draft edition of a 19th century German book, which accompanies the
system as comprehensive example. A future version will be used for a forthcoming electronic
edition of the correspondence of Swiss philosopher and polymath Johann Georg Sulzer (1720–
1779) prepared at University Halle-Wittenberg.

The system takes the following inputs: (1) An object text document, possibly in LATEX ;
(2) Documents with annotations, where the associated places in the object text are specified
abstractly; (3) Large fact bases, like GND, GeoNames, YAGO and DBpedia, from which extracts
are preprocessed and cached; (4) An assistance document, that is, a configuration file, where
information is given to bias or override automated inferencing such that fully correct results
are obtained. A user interface is provided that integrates the system into the Emacs editor. A
facility for named entity recognition is included, which identifies individual persons, locations
and dates, based on GND and GeoNames as gazetteers. Conventional recognition systems such
as Stanford Named Entity Recognizer [4] just associate entity types with phrases.

3http://cs.christophwernhard.com/kbset/, free software under GNU General Public License.
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A variety of outputs can be produced, including LATEX documents with annotations and
merged-in inferred information, and Emacs text buffers where recognized identifiers are high-
lighted and candidate entities can be inspected along with a presentation of the respective
rationale for choosing them. A typical application is the development of an annotated essay or
book, where the object text is edited in LATEX and the assistance document evolves step-by-step
until the inferred information is fully correct.

Acknowledgments. This work was supported by Alexander von Humboldt-Professur für
neuzeitliche Schriftkultur und europäischen Wissenstransfer and by DFG grant WE 5641/1-1 .
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Abstract

We describe some details of the Lean theorem prover, focusing on the aspects that make Lean a good environment

for automation and AI. We also outline a novel automated procedure for proving inequalities over R that is currently

being implemented.

The Lean theorem prover. The Lean theorem prover is a new proof environment being developed at
Microsoft Research ([3, 4]). While somewhat similar to Coq [2] in foundation and syntax, Lean aims to
improve on the status quo in a number of ways. In dependent type theory, complex and subtle techniques
are needed to elaborate terms in an intuitive way. Lean combines an extremely efficient elaboration process
with a powerful type class inference mechanism. This setting allows for a clean, uniform development of the
algebraic hierarchy and number structures, making the system conducive to generalized automated methods.
Machine-learning techniques are being developed to choose relevant theorems for use in ATP, making use of
learned strategies for problem-solving.

Indeed, Lean has been developed from the beginning with automation in mind. While we will treat
Lean as an interactive proof environment in this document, the system can also be seen as a body of verified
mathematical claims and an API for connecting them; in effect, it is a setting for automated tools to assemble
proofs. Lean aims to bridge the gap – or blur the line, if one likes – between user-centric interactive proving
and machine-centric automated proving.

Type class inference. Lean allows any family of inductive types to be marked as a type class. A term
that instantiates one such type can be marked as an instance of the type class. The elaborator can then
synthesize terms of this type by searching through declared instances. This search is not simply a lookup
table, since instances can depend on other instances. In the following example, square brackets instruct the
elaborator to infer the term using type class inference. The proof in the final line is inferred as well.

inductive decidable [class] (p : Prop) : Type := ...
definition dec_and [instance] (p q : Prop) [Hp : decidable p] [Hq : decidable q] : decidable (p ∧ q) := ...
constant P : N→ Prop

axiom Pn [instance] : ∀ n, decidable (P n)
example : decidable (P 2 ∧ P 3 ∧ P 4) := _

−− inferred: @dec and (P 2) (P 3 ∧ P 4) (Pn 2) (@dec and (P 3) (P 4) (Pn 3) (Pn 4))

The type class inference tool employs a λ-Prolog-style [7] recursive, backtracking search, and caches results.

Algebraic hierarchy. The algebraic hierarchy serves two purposes in a proof assistant. First, these
structures are objects of study in their own right: users prove theorems about groups, vector spaces, or fields
in the abstract without intended applications. Second, these structures are instantiated by the concrete
number structures: R forms a field, and theorems proved about fields should also apply to R.

As in similar systems, Lean’s algebraic structures are defined as record types indexed over a base type.

structure monoid [class] (A : Type) extends semigroup A, has_one A :=
(one_mul : ∀a, mul one a = a) (mul_one : ∀a, mul a one = a)

The extends syntax ensures that all data fields required for a semigroup are also required for a monoid, and
automatically constructs a definition of the form

definition monoid.to.semigroup [instance] [H : monoid A] : semigroup A := ...
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by finding the appropriate projections. When one structure A′ extends another structure A, all theorems
proved about types instantiating A will also apply to types instantiating A′. For instance, the associativity
of multiplication in a monoid follows from the corresponding theorem about semigroups. No duplication or
instantiation of theorems is necessary. Since projections reduce definitionally, when type class inference finds
different terms witnessing the same property, they will be definitionally equal.

The effect of this development is an algebraic hierarchy that behaves exactly as a mathematician would
expect: structures are cumulative, and when using a certain theorem or property, there is no need to
remember at what point of the hierarchy that property entered.

Number structures. The number structures N, Z, Q, R, and C are all defined and instantiate the appro-
priate algebraic structures. Once int_is_comm_ring [instance] : comm_ring int has been defined, all
theorems applicable to commutative rings are immediately available for Z. Importantly, this process happens
via exactly the same mechanism as in the algebraic hierarchy. Automation designed for, say, ordered fields
will not distinguish between Q and R, making the system clean and uniform.

Lean’s number structures have been developed constructively, through showing that R is an ordered ring.
The remainder of the construction of R and C is classical.

Numerical computation. Binary numerals can be used in Lean in any structure that has 0, 1, and +.
definition bit0 {A : Type} [s : has_add A] (a : A) : A := add a a

definition bit1 {A : Type} [s : has_one A] [t : has_add A] (a : A) : A := add (bit0 a) one

definition add2 (n : N) : N := n + 2

The type of a numeral is inferred from context. Here, 2 is shorthand for bit0 nat nat_has_add (one nat

nat_has_one), where nat_has_add : has_add nat and nat_has_one : has_one nat are found by type
class inference. In structures with the appropriate properties of addition, multiplication, subtraction, and
division, numeric computations can be performed efficiently by binary arithmetic algorithms.

Uniformity for automation. The uniform approach using type class inference is conducive to both shal-
low and deep automation. Treating numerals generally makes arithmetic work identically across structures:
computations with + and − in Z are exactly the same as in R and as in any ring. This allows Lean to have
a powerful and flexible simplifier. Type class inference makes it trivial for automated techniques to detect
what algebraic structures are present in a goal and what methods may be applicable. Since the same general
theorem – not separate instantiations of one general theorem – asserts the associativity of addition in N, Z,
Q, etc., machine learning techniques do not need to be trained separately on examples for each structure.

Verifying non-linear inequalities. In interactive theorem proving, one often wishes to discharge simple
arithmetic hypotheses that follow from premises in the context. Proof assistants implement solvers over
various domains, for example linear constraints over Q or Z. Higher-powered methods – e.g. CAD methods
for RCFs – can only generate proofs with much effort [6]. A class of relatively simple but highly nonlin-
ear problems over R has proven very difficult to attack automatically. These problems show up often in
mathematical analysis and in the verification of physical systems. For example, consider the inference

0 < x < y, u < v ⇒ 2u+ exp(1 + x+ x4) < 2v + exp(1 + y + y4).

This inference is tight, nonlinear, outside the theory of RCF, and difficult to capture systematically with
backchaining methods; nevertheless, it looks “simple” to any mathematician. In [1, 5], Avigad, Lewis, and
Roux describe a system, based on a Nelson-Oppen style architecture [8], that solves many such problems by
saturating arithmetic facts and heuristically instantiating lemmas. While not a complete decision procedure,
a prototype has been shown to perform well on real-life examples from ITP and system verification.

This system – nicknamed Polya – is currently being implemented as a tactic in Lean. One requirement
of this system is that terms be rewritten to a normal form; Lean’s flexible rewriter allows us to achieve this
with minimal overhead. Polya makes many simple numerical calculations over Q, which is efficient to verify
in Lean. Once Polya is combined with a linear solver and general-purpose AI methods, we believe Lean will
support a suite of automated tools exceeding that of other theorem provers.
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Abstract

This paper describes the use of automated reasoning methods for tackling commonsense reason-
ing benchmarks. For this we use a benchmark suite introduced in the literature. Our goal is to use
general purpose background knowledge without domain specific hand coding of axioms, such that
the approach and the result can be used as well for other domains in mathematics and science.

Benchmarks for Commonsense Reasoning For a long time, no benchmarks in the field of com-
monsense reasoning were available and most approaches were tested only using small toy examples.
Recently, this problem was remedied with the proposal of various sets of benchmark problems. There is
the Winograd Schema Challenge [6] whose problems have a clear focus on natural language processing
whereas background knowledge has an inferior standing. Another example is the Choice Of Plausible
Alternatives (COPA) challenge1 [10] consisting of 1000 problems equally split into a development and
a test set. Each problem consists of a natural language sentence describing a scenario and a question. In
addition to that two answers are provided in natural language. The task is to determine which one of these
alternatives is the most plausible one. The following example presents a problem from this benchmark
suite:

My body cast a shadow over the grass. What was the CAUSE of this?

1. The sun was rising.

2. The grass was cut.

Even though for the COPA challenge capabilities for handling natural language are necessary, back-
ground knowledge and commonsense reasoning skills are crucial to tackle these problems as well, mak-
ing them very interesting to evaluate cognitive systems.

Another set of benchmarks is the Triangle-COPA challenge2 [7]. This is a suite of one hundred logic-
based commonsense reasoning problems which was developed specifically for the purpose of advancing
new logical reasoning approaches. The structure of the problems is the same as in the COPA Challenge
however the problems in the Triangle-COPA challenge are not only given in natural language but also in
first-order logic. All previous systems tackling the COPA benchmarks focus on linguistic and statistical
approaches by calculating correlational statistics on words. Until now only one logic based system is able
to tackle the Triangle-COPA benchmarks: [7] use abduction together with a set of hand-coded axioms.

We refrain from using hand-coded knowledge and suggest to use knowledge bases containing com-
monsense knowledge like OpenCyc [5], Sumo [9], and Yago [11] together with a theorem prover instead.

Tackling Backround Knowledge When combining an example of the COPA benchmarks with back-
ground knowledge, several problems have to be solved: 1. The problems are given in natural language
and have to be transformed into a logical representation. 2. The predicate symbols used in the for-
malization of the example are unlikely to coincide with the predicate symbols used in the background
knowledge. 3. The background knowledge is too large to be considered as a whole. The first problem can
be solved using the Boxer [1] system which is able to transform natural language into first-order logic
formulae. We address the second problem by using WordNet [8] to find synonyms and hypernyms of the

∗Work supported by DFG FU 263/15-1 ‘Ratiolog’.
1Available at http://people.ict.usc.edu/∼gordon/downloads/COPA-questions-dev.txt.
2Available at https://github.com/asgordon/TriangleCOPA/.
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Figure 1: Workflow of the entire task. The starting formulae are generated by transforming the
natural language problems of COPA into logic by using the Boxer system. I case of Triangle-
COPA they are given already as the problem description

predicate symbols used in the formalization of the example. Note that the formalization of the example
consists both of the formulae describing the situation as well as the formulae for one of the alternatives.
In the next step, predicates symbols used in OpenCyc, which are similar to these synonyms and hyper-
nyms are determined. With the help of this information, a connecting set of formulae is created. In this
step, it is also necessary to adjust the arity of predicate symbols which is likely to differ since Boxer
only creates formulae with unary or binary predicates and all predicates in Triangle-COPA contain an
argument for so called eventualities.

The third problem is addressed using selection methods. For this, all predicate symbols occurring
in the formalization of the example and in the connecting set of formulae are used. As selection meth-
ods, SInE as well as k-NN as they are implemented in the E.T. metasystem [4] come to use. Axioms
resulting from this selection are combined with the connecting set of formulae and the formalization of
the example. The result of this combination serves as input for a theorem prover, in our case the Hyper
prover.

Figure 1 shows the entire workflow, which is necessary in order to transform the given benchmark
problem into a theorem proving task. We did a very preliminary experiment to test this workflow. From
the COPA benchmark set we selected 75 problems together with the respective two alternatives. Feeding
these examples into the workflow resulted finally in 150 prove tasks for Hyper and we learned a lot —
about problems which have to be solved. Hyper found 48 proofs and 71 models; the rest are time-outs.
One problem we encountered is that some contradictions leading to a proof are introduced by selecting
too general hypernyms from WordNet. E.g. the problem description of our example from the previous
section as given by Boxer is

∃A,B(∃C,D,E,F(rover(D,B)∧∃G(rtopic(G,A)∧arisingC(G))∧ rthat(B,C)∧
rpatient(D,E)∧ ragent(D,F)∧ vcast(D)∧nshadow(E)∧
nbody(F)∧ ro f (F,E)∧nperson(E))∧nsun(A)∧ngrassC(B)).

From WordNet the system extracted the information, that ‘individual’ is a hypernym of ‘shadow’ and
‘collection’ is a hypernym of ‘person’ leading to the two connecting formulae:

∀X(nshadow(X)→ individual(X))

∀X(nperson(X)→ collection(X)).

The selection from OpenCyc resulted among others in the axiom

∀X¬(collection(X)∧ individual(X)).

These formulae together lead to a closed tableau because of a contradiction between a shadow which
stems from a person, whereas WordNet gives that a shadow is an individual, a person is a collection
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and together with the Cyc axiom we get the contradiction, which has nothing to do with the examined
alternative that the sun is rising. In order to avoid this, we have to implement a kind of depth-bound for
selecting hypernyms from WordNet in future versions.

Other contradictions stem directly from inconsistencies in the knowledge base used as source for
background knowledge (in our case OpenCyc). E.g. the two formulae

∀Xspeed(fqpquantityfnspeed(X))

∀X¬speed(X)

were selected immediately leading to a contradiction which again does not have to do anything with
the examined alternative about the sun rising. This illustrates that we have to find a way to deal with
inconsistent background knowledge.

Ranking of Proofs and Proof Attempts When using the Hyper prover within the Deep Question
Answering system LogAnswer ([2]) we already had to tackle the problem that the prover nearly never
found a proof of the given problem. Instead we had to delete some subgoals of the proof-task, which
could not be solved within a given time-bound — we called this relaxation. In order to find a best answer
of the system we had to compare several proofs, or better proof attempts, because of the relaxations. For
this ranking we used machine learning to find the best proof rsp. answer. We are planning to use a similar
approach for the afore-mentioned benchmarks. The situation is such, that we have a problem description
P, in our COPA example above the logical representation of ‘My body cast a shadow over the grass.’
together with two possible answers E1 and E2.

We try to solve the two proof tasks P∪BG |= E1 and P∪BG |= E2, where BG is the background
knowledege as discussed in the previous section. After timeouts and relaxations we get for the two tasks
two tableaux, which may contain open and closed branches. The closed branches are parts of a proof and
the open branches either are a model (and hence no closed tableau exists) or they are only open because
of a time-out for this branch.

The task is to find out which of the two explanations E1 and E2 are ‘closer’ to be a logical conse-
quence. In the LogAnswer system we gave the two answers to humans to decide this and we then used
this information to train a machine learning system. For the scenario of the COPA and Triangle-COPA
benchmarks we designed a preliminary study, which aims at using the information about the two tableaux
created for P∪BG |= E1 and P∪BG |= E2 respectively together with information from formulae of the
problem and the background P∪BG to generate examples for training.

We restricted our preliminary study to propositional logic and analyzed tableaux created by the Hyper
prover for randomly created sets of clauses. For each pair of propositional logic variables p and q
occurring in a clause set, we were interested in the question if p or q is ‘closer’ to a logical consequence.
We reduced this question to a classification problem: for each pair of variables p and q, the task is to
learn if p < q, p > q or p = q, where p < q means, that q is ‘closer’ to a logical consequence then p and
p = q means that p’s and q’s ‘closeness’ to a logical consequence is equal. Consider the following set of
clauses:

p0

p4→ p2∨ p3∨ p7

p0→ p4

p3∧ p5→ p6

p3∧ p5∧ p8→ p1

p2→⊥
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< > =
(predicted) (predicted) (predicted)
< (actual) 5,595 78 33
> (actual) 90 5,589 27
= (actual) 9 5 772

Table 1: Confusion matrix for classifying the test set with the learnt decision tree. The numbers
occurring in the diagonal represent all correctly classified instances, whereas the other cells list
incorrectly classified instances.

Clearly, p0 and p4 are logical consequences of this clause set. Therefore p0 = p4 and p0 > q for all
other variables q. On the other hand, from p2 it is possible to deduce a contradiction, which leads to
p2 < q for all other variables q. Comparing p6 and p1 is a little bit more complicated. Neither of these
variables is a logical consequence. However assuming p3 and p5 to be true, would allow to deduce p6
but not p1. In oder to deduce p1 it is necessary to assume not only p3 and p5 to be true but also p8.
Therefore p1 < p6.

To use machine learning techniques to classify these kind of examples, we represent each pair of
variables (p,q) as an instance of the trainings examples and we provide the information, which of the
three relations <,>,= is right for p and q. Each of these instances contains 22 attributes. Some of
these attributes represent information on the clause set like the proportion of clauses with p or q in the
head as well as rudimentary dependencies between the variables in the clause set. In addition to that, we
determine attributes representing information on the hypertableau for the set of clauses like the number
of occurrences of p and q in open branches. Furthermore, we determine an attribute mimicking some
aspects of abduction by estimating the number of variables which have to be assumed to be true in order
to deduce p or q respectively, which allows us to perform comparisons like the one between p1 and p6
in the above example. Of course we also took into account whether one of the two variables is indeed a
logical consequence.

For the first experiments, 1,000 sets of clauses each consisting of about 10 clauses and containing
about 12 variables were randomly generated. These sets of clauses were analyzed and used to create a
training set. For each pair of variables occurring in one of the clause sets, an instance was generated. All
in all this led to 123,246 examples for training purposes. In these examples, the classes < and > each
consists of 57,983 examples and the class = of 7,280 examples. We used several classifiers implemented
in the Weka [3] system. For example we learnt a decision tree from these training examples. We tested
this decision tree with a test set which was generated from 100 randomly generated sets of clauses
different from the clause sets used for the training examples. This resulted in a test set consisting of
12,198 instances. The constructed decision tree correctly classified 98.02 % instances of our test set.
Table 1 provides information on correctly and incorrectly classified instances of the different classes.

We are aware that automatically classifying the test set might introduce errors into the test set and
therefore tampers the results. Since it is very labor-intensive to manually generate test data, we only
classified all pairs of two clause sets manually. For this much smaller test set, depending on the classifier
used, we reached percentages of correctly classified instances of up to 80 %. In the next step, we are
planning to expand our experiments to clause sets given in first-order logic.Results?
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Abstract

Higher Order Logic has been used in formal mathematics, software verification and
hardware verification over the past decades. Recent developments made sharing proofs
between some theorem provers possible. This paper first gives an introduction and an
overview of related recent advances, followed by the proof checking benchmarks of a
proof sharing repository, namely OpenTheory. Finally, we introduce ProofCloud, the
first proof retrieval engine for higher order logic proofs.

1 Introduction
Higher order logic is also known as simple type theory. It is an extension of simply typed λ-
calculus with additional axioms and inference rules [4]. Interactive Theorem Provers (ITPs)
of higher order logic have been playing an important role in software verification, hardware
verification and formal mathematics. Among them, the HOL family consists of HOL Light
[8], HOL4 [13] and ProofPower [11], etc. These ITPs implemented the same higher order
logic, namely Church’s simple type theory [9]. However, they each contain significant the-
ory formalizations that are not accessible to each other. HOL Light [8] has a formalization
of complex analyses while HOL4 has a formalization of probability theory [13]. In contrast,
ProofPower has a formalization of the Z specification language [11]. Proof libraries from one
ITP may contribute to the proof automation of another ITP [7, 5]. For the sake of proof
sharing between ITPs with different theories, OpenTheory [9] was developed as a cross-
platform proof package manager for proofs in the HOL family. It consists of a standard li-
brary and many proof packages including lists, natural numbers, functions, etc. Taking ad-
vantage of these packages, OpenTheory has inspired further exploration of theory manage-
ment [10, 6] as well as the development of several projects [1, 2, 14].
ITPs may not be bug-free and may lead to errors in generated proofs while not being appar-
ent within the proof systems themselves. Together with possible mistakes in the process of
importing and exporting, OpenTheory is not guaranteed to be reliable. Even worse, proofs
can be huge, making them difficult or even impossible to be checked by hand. The demand
of reliability of such systems leads to the necessity of proof checking, especially independently
from the ITPs involved. Taking advantage of the similarity of the logic and design between
these systems, OpenTheory [9] has developed a standard format for serialising proofs [9]. One
way to verify these proofs (also known as proof articles) is to export them to the OpenTheory
format followed by the proof checking process by Dedukti [12].

∗The author was supported by the MPRI-INRIA scholarship.
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2 Proof Transformation and Checking with Holide and
Dedukti

Dedukti [12] is a logical framework based on λΠ-calculus Modulo [3] for defining logics and
checking proofs. It has been widely used as a universal proof checker for ITPs including Coq,
Matita, HOL, FoCaLiZe, etc1. To transform higher order logic proofs from the OpenTheory
format to the Dedukti format, we need a translator, namely Holide [1]. Holide uses a modular
translation of higher order logic which makes the translation possible to extend [1]. Recent
updates of the OpenTheory resulted in an upgrade of the Holide program. More specifically,
OpenTheory expanded its logic kernel and added some new inference rules and some other
features2. Holide is therefore upgraded to version 2 to capture corresponding features and the
new format.

3 Proof Retrieval with ProofCloud
ProofCloud3 is a search engine of higher order logic proofs customised from Swiftype. While
OpenTheory groups proofs up, ProofCloud unpacks them and displays a description of each
package (on the index pages) as well as all the theorems contained individually. It has been
populated by over 1,800 proofs from 6 packages of OpenTheory. As far as the author knows,
it is the only online proof search engine of its kind. ProofCloud presents also the proof check-
ing results by Holide and Dedukti. Further more, it tracks the origin of classicism. With the
ability to classify classical proofs, it illustrates the axioms and constructive/classical lemmas
involved for each theorem as well as the amount of constructive/classical proofs for the pack-
age page.

4 Evaluation and Conclusion
The standard library in OpenTheory grouped theorems into packages, including the stan-
dard library and theorems of booleans, sets, lists, etc. Previous work of Holide has checked
only the standard library. Following the upgrade of Holide, for the first time, Holide and De-
dukti performed proof checking on all packages of OpenTheory. Table 1 illustrates the size of
OpenTheory proof article files and the time taken for translation as well as the size of trans-
lated files and the time taken for proof checking by Dedukti. Both article files and Dedukti
files are compressed by gzip to reduce the effect of syntax formatting and white-space. These
benchmarks were generated on a 64-bit Intel Core i5-4590 CPU @3.30GHz ×4 machine with
3.8GB RAM. This provides evidence that OpenTheory is a reliable platform for higher order
logic proofs and validated the upgrade of Holide. In addition, the structural proof analyses
by ProofCloud shows that the proportion of constructive theorems varies from package to
package. For example, the natural-divides package has only 10 constructive theorems out of
136 theorems, making only 7.35% proofs constructive in the package. Apart from maintaining
Holide, future work also includes adding more packages to ProofCloud and further improve
the user interface and the searching accuracy.

1https://www.rocq.inria.fr/deducteam/software.html
2More details between version 5 and version 6 are included in the announcement: http://www.gilith.

com/pipermail/opentheory-users/2014-December/000461.html
3airobert.github.io/proofcloud/
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Package Proof Translation with Holide Proof Checking with Dedukti
Size (KB) Time (s) Size (KB) Time (s)

base 1,194 19.42 4,440 9.74
cl 313 5.56 1,219 2.46
empty 0 0.00 0 0.00
gfp 112 1.35 375 0.65
lazy-list 1,391 31.78 5,717 13.11
modular 37 0.37 111 0.17
natural-bits 132 1.39 419 0.68
natural-divides 157 1.94 566 0.99
natural-fibonacci 108 1.24 354 0.60
natural-prime 116 1.34 388 0.65
parser 204 3.15 776 1.69
probability 23 0.23 69 0.11
stream 63 0.73 211 0.38
word10 71 0.62 216 0.29
word12 72 0.75 220 0.35
word16 107 0.77 364 0.36
word5 64 1.56 192 0.72
Total 4,377 72.21 15,637 32.95

Table 1: Benchmarks of OpenTheory with Holide and Dedukti
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